Energy News  
Much Ado About HD141569

HD141569 by Weinberger, Becklin and Schneider

Notre Dame - Jul 08, 2002
Research by two University of Notre Dame astronomers may shed new light on how planets are formed. Terrence W. Rettig, professor of physics, and graduate student Sean Brittain report their findings in last Thursday's edition of the scientific journal Nature.

Even though an Earth-like planet never has been detected outside the solar system, the formation process for these smaller planets is fairly well understood.

Observations of infrared and radio emission from dust in space have revealed the presence of protoplanetary disks where dust grains likely accumulate to form rocky planets like Earth.

It's a mystery, however, as to how gas giant planets, such as Jupiter and Saturn, form from the remaining primordial hydrogen and helium gas in the disk. The time scale as to how and when this occurs after the formation of Earth-like planets is unknown.

Rettig and Brittain have been studying a protoplanetary disk around the star HD141569, located 320 light years from Earth.

Particularly intriguing is the fact that they have found emission of gaseous H3+ ions coming from the region around the star.

The only previous detection of H3+ emission of this type was in the upper atmospheres of Jupiter, Saturn, Uranus and Neptune. Rettig and Brittain cautiously point out that the detection of H3+ emission may indicate the existence of a forming gas giant planet, or shocked hydrogen gas at the inner edge of the disk.

Higher resolution observations are needed to determine if the detection indicates the existence of a large gaseous protoplanet that may eventually form a Jupiter-like planet. However, the prospect is intriguing because this would be the first direct detection of light from an extrasolar planet or protoplanet.

Even if future work shows the H3+ originates from the inner disk, the results will provide astronomers important information on how the material surrounding the star evolves chemically. Also, of the 20 stars observed by Rettig and Brittain, H3+ emission was only detected from the more evolved disk around HD141569.

Community
Email This Article
Comment On This Article

Related Links
Dept of Physics University of Notre Dame
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Study Highlights Role Of Hit-And-Run Collisions In Planet Formation
Santa Cruz CA (SPX) Jan 12, 2006
Hit-and-run collisions between embryonic planets during a critical period in the early history of the Solar System may account for some previously unexplained properties of planets, asteroids, and meteorites, according to researchers at the University of California, Santa Cruz, who describe their findings in a paper to appear in the January 12 issue of the journal Nature.







  • Reforms Urged In Arab Countries To Attract Energy Investments
  • Nasa To Test Microwave Effects On Plant Growth
  • New Research Turns Sewage Farms Into Power Plants
  • R&D The Key To A Sustainable, Clean Energy Future

  • Glitch-Plagued Czech Nuclear Plant Suffers Problems, Again
  • Glitch-Plagued Czech Nuclear Reactor Suffers Another Shutdown
  • Russia To Bid For Finnish Nuclear Contract
  • Russia To Agree To Inspection Of Iranian Nuclear Plant: Bush









  • Boeing Signs Technology Development Agreement With JAI For Work On Sonic Cruiser
  • Boeing Sonic Cruiser Completes First Wind Tunnel Tests



  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement