Energy News  
Most Space Telescope Sees "Tail Wagging Dog" In Star - Exoplanet System

Artist rendering of 51 Pegasi, by Seth Shostak. The theories of the origins and evolution of planetary systems were shaken up a decade ago with the discovery of the first of these giant close-in exoplanets (dubbed "hot Jupiters") around the Sun-like star, 51 Pegasi.

Montreal QC (SPX) May 17, 2005
Canadian astronomers using the MOST space telescope have observed a remarkable planetary system where a giant close-in planet is forcing its parent star to rotate in lock-step with the planet's orbit.

"This is truly a stellar story of 'tail wags dog'," according to Dr. Jaymie Matthews of the University of British Columbia, leader of the Canadian Space Agency's MOST space telescope mission, in an announcement about the exoplanetary system tau Bootis made at the annual meeting of the Canadian Astronomical Society in Montreal Monday.

"The interactions between the star and the giant planet in the tau Bootis system are unlike anything astronomers have seen before," elaborates Dr. Matthews.

"And they would be undetectable by any instrument on Earth or in space other than MOST."

The MOST (Microvariability & Oscillations of Stars) satellite has revealed that the star tau Bootis is undergoing subtle variations in its light output that are in synch with the orbit of the planet - unimaginatively designated tau Bootis b - in a tight orbit around it.

The best explanation is that the planet's gravity has forced the outer envelope of the star to rotate so it always keeps the same face to the planet - despite the fact that the planet is probably under 1% of the star's mass.

"It's no surprise when a star or planet gravitationally forces its smaller companion to spin according to its orbital rhythm, like the Moon always keeping the same face to the Earth," Dr. Matthews explains.

"But for a planet to force a star to do this is very unusual."

In all likelihood, only the surface layers of gas in the star have succumbed to the planet's influence, just as in the Earth-Moon system, where the Moon has succeeded in causing a bulge in the thin layer of water on the Earth's surface which results in the ocean tides, but has not forced the massive solid Earth underneath to rotate in step.

The only reason why the planet can lead even part of the star in the tau Bootis system is because it orbits so closely - only 1/20th of the Earth-Sun distance - and because it's quite big as planets go - at least 4 times the mass of Jupiter, the largest planet in our own Solar System.

The planet was discovered in 1997 by American astronomers Paul Butler, Geoff Marcy and colleagues based on the wobbling motions induced in the star by the 3.3-day orbit of an unseen companion.

With such a small orbit, you might expect other complicated interactions between the star and planet, and MOST has observed evidence for these as well. There are indirect indications of starspots, tidal distortion, and even magnetic activity on the surface of tau Boo a.

Last year, another team of Canadian scientists, led by Evgenya Shkolnik (an alumna of UBC now at the University of Hawaii) and Gordon Walker (an exoplanet pioneer and MOST Science Team member at UBC), presented evidence in a system similar to tau Boo, HD179949, for a planet heating up the gas in its parent star, which is also behaviour never seen before.

This would probably be caused by the entanglement of a magnetic field of the planet with the star's field.

"We may be witnessing another example of this in tau Bootis," notes Dr. Walker.

"The nature of the light variations is different for each of the nine exoplanet orbits monitored by MOST in 2004 and 2005. The explanation for all the variability will have to include intrinsic stellar effects, like rotation, and planet-induced effects, like heating caused by tides and magnetic fields - a complex model, to be sure."

The theories of the origins and evolution of planetary systems were shaken up a decade ago with the discovery of the first of these giant close-in exoplanets (dubbed "hot Jupiters") around the Sun-like star, 51 Pegasi.

The planet in the tau Bootis system is more massive and closer to its star than the one in 51 Pegasi, and represents a remote laboratory for planetary scientists to test new theories about planet formation that will eventually be applied to our own Solar System.

The details revealed by MOST have already excited theorists, and certainly excited the observers on the MOST team.

Dr. Rainer Kuschnig, MOST Instrument Scientist (UBC) can barely contain his enthusiasm: "It's tremendous fun to watch the data on this system come in from the satellite and see something new every day. It's so cool!" Community
Email This Article
Comment On This Article

Related Links
Canadian Space Agency
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Study Highlights Role Of Hit-And-Run Collisions In Planet Formation
Santa Cruz CA (SPX) Jan 12, 2006
Hit-and-run collisions between embryonic planets during a critical period in the early history of the Solar System may account for some previously unexplained properties of planets, asteroids, and meteorites, according to researchers at the University of California, Santa Cruz, who describe their findings in a paper to appear in the January 12 issue of the journal Nature.

---------------------------------------------------------
New from Telescopes.com!

It's new. And it's downright terrific!

Celestron's CPC Schmidt-Cassegrain telescope is the scope you've been waiting for! It offers new alignment technology, advanced engineering, and bold new design at a new, low price!

In fact, Celestron's Professional Computerized (CPC) scope with revolutionary SkyAlign Alignment Technology redefines everything that amateur astronomers are looking for. It offers quick and simple alignment, GPS technology, unsurpassed optical quality, ease of use, advanced ergonomics, enhanced computerization and, most important, affordability.

Want to view M-31 tonight? One button takes you there!

Shop for telescopes online at Telescopes.com! today!
------------------------------------------------------------







  • Global Wind Map May Provide Better Locations For Wind Farms
  • Downside Risks Loom In The Race For Oil
  • Silicon Solution Could Lead To A Truly Long-Life Battery
  • EU Sees 'No Change' On Nuclear Project Despite French Claim

  • France's Alstom Wins China Nuclear Power Deal
  • Walker's World: Voting For Nukes In Iran
  • Britain May Need Another Generation Of Nuclear Power Plants
  • Study Uncovers Bacteria's Worst Enemy





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Tiny New Control Device Improves Lateral Stability Of Airplane
  • EADS To Get New Leadership, But Franco-German Rift Leaves Airbus Hanging
  • Boeing Procurement Scandal Spawns 48 Air Force Reviews: General
  • Who Will Win: Boeing Or Airbus?

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement