![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Osaka, Japan (SPX) Feb 20, 2018
Eggs may soon fuel more than people in the morning. Researchers from the Osaka City University in Japan have developed a way to potentially use egg whites as a substrate to produce a carbon-free fuel. "Hydrogen is a promising fuel and energy storage medium because hydrogen emits no global warming gas when used. Nevertheless, hydrogen generation reactions usually require fossil fuels and emit carbon dioxide," said Hiroyasu Tabe, a special appointment research associate at the Graduate School of Engineering at Osaka City University in Japan. According to Tabe, it would be extremely efficient to use a photocatalyst to speed the reaction of hydrogen generation from a renewable source, such as solar power. Called hydrogen evolution, the gas must be stored and kept from recombining into more common molecules that aren't useful for producing clean fuel. "Precise accumulation of molecules acting as catalytic components are important to construct a photocatalytic system," Tabe said. "When the molecular components are randomly distributed in the solution or formless compounds, the catalytic reactions cannot proceed." One promising way to precisely accumulate these catalytic molecules is through the production of pure proteins by cultivated bacteria, but they require special lab equipment. Chicken eggs, however, are well-known vessels of protein-based chemicals, according to Tabe. The whites of chicken eggs, which are inexpensive and inexhaustible, consist of porous lysozyme crystals. "Lysozyme crystals have a highly ordered nanostructure and, thus, we can manipulate the molecular components when they accumulate in the crystals," Tabe said, noting that the crystal structure can be easily analyzed with X-ray technology. This analysis is of particular importance, according to Tabe, because the molecular components within the crystals must be manipulated precisely through what is called cooperative immobilization. This is achieved by the application of rose bengal, which is commonly used as a dye in eye drops to identify damage. In this case, it entered the solvent channels in the lysozyme crystals and accelerated the hydrogen evolution reaction, since the functional molecules and nanoparticles can be accumulated within the crystals' inner spaces. "These results suggest that porous protein crystals are promising platforms to periodically and rationally accumulate catalytic components by using molecular interactions," Tabe said. They published their results on February 2nd in Applied Catalysis B.
![]() ![]() System draws power from daily temperature swings Boston MA (SPX) Feb 16, 2018 Thermoelectric devices, which can generate power when one side of the device is a different temperature from the other, have been the subject of much research in recent years. Now, a team at MIT has come up with a novel way to convert temperature fluctuations into electrical power. Instead of requiring two different temperature inputs at the same time, the new system takes advantage of the swings in ambient temperature that occur during the day-night cycle. The new system, called a thermal resonat ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |