Energy News  
Molecular Memories, Once Doubted, Prove Durable and Practical

Molecular Memory technology aims to pack in the memory like never before.

Riverside - Dec 03, 2003
In the ongoing quest to create computing devices that are both incredibly small and incredibly powerful, scientists � envisioning a future beyond the limits of traditional semiconductors � have been working to use molecules for information storage and processing.

Until now, researchers were skeptical that such molecular devices could survive the rigors of real-world manufacturing and use, which involve high temperatures and up to one trillion operational cycles.

But scientists at the University of California, Riverside and North Carolina State University have demonstrated that molecular memories are indeed both durable and practical � a finding that could spur development of the technology.

The scientists' results, in a paper titled "Molecular Memories that Survive Silicon Device Processing and Real-World Operation," are described in the Nov. 28 issue of the journal Science.

Dr. Jonathan S. Lindsey, Glaxo Distinguished University Professor of Chemistry at NC State and one of the paper's authors, said the team was faced with a very basic problem.

"If molecular materials can't compete against semiconductor materials under the rigorous conditions of the real world," he said, "then trying to implement them in electronic devices would be pointless. Because our goal is to develop molecule-based memory devices, we first had to test their durability and stability."

Led by Dr. David F. Bocian, professor of chemistry at the University of California, Riverside, the team attached porphyrins � disk-shaped organic molecules similar to chlorophyll � with specific electronic properties to an electroactive surface, storing information in the form of the molecules' positive charges.

After a series of tests, the scientists found that the resulting molecular memories were "extremely robust" and offered clear advantages over traditional semiconductor-based technology.

"The porphyrin-based information-storage elements exhibit charge-retention times that are long (minutes) compared with those of the semiconductor elements in dynamic random access devices (tens of milliseconds)," the university chemists report in their paper.

In addition, their testing showed that such molecule-based information-storage devices "meet the processing and operating challenges required for use in electronic devices." In particular, they proved that "these molecules are stable under extremes of temperature (400�C) and large numbers of read-write cycles (1 trillion)."

That demonstrated stability, they conclude, "indicates that these molecular architectures can be readily adapted to current semiconductor fabrication technology and operated under the conditions required for a practical device."

By establishing the practicality of molecular memories, says Lindsey, the findings should help eliminate doubts about the role of organic materials in electronic devices.

"There is a perception that organic molecules are fragile," Lindsey said. "The critical question has been whether, given the high temperatures and other stresses of production and use, any molecule-based devices could meet functionality standards. I believe our research has laid this question to rest, and demonstrated that appropriately chosen molecules can readily function in practical devices."

That knowledge, he said, should speed development of molecule-based electronics, which promise smaller, faster and far more powerful computers and other applications.

The research was funded by ZettaCore Inc. and the Defense Advanced Research Projects Agency (DARPA) Moletronics Program. Bocian and Lindsey are co-founders of ZettaCore and serve as consultants for the company.

Community
Email This Article
Comment On This Article

Related Links
NC State
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Industry Team Achieve New Communications Technology With AESA Radars
Baltimore MD (SPX) Jan 12, 2006
A team comprised of three leading US aerospace and defense contractors has demonstrated an innovative technological use of active electronically scanned array (AESA) radars for high-bandwidth communications.







  • U.Texas At Austin Flywheel Spins To A Milestone Speed Record
  • Power, Water Shortages Feared To Continue
  • American Superconductor To Help Power Electro-Thermal Chemical Gun Project
  • Prospects Brighten For Future Superconductor Power Cables

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • National Consortium Picks Aviation Technology Test Site
  • Wright Flyer Takes To The Sky In Las Vegas
  • Aurora Builds Low-speed Wind Tunnel
  • Yeager To Retire From Military Flying After October Airshow

  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems
  • Boeing To Build Space-borne Power Generator
  • New High-Purity Plutonium Sources Produced At Los Alamos

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement