Energy News  
Methane Rich Greenhouse Boosted Evolutionary Process

cyanobacterial remains in rock

Denver - Oct 28, 2002
What constrained the evolution of life during the very hot early Earth? Was a simple drop in temperature largely responsible for the emergence of cyanobacteria, a large and varied group of bacteria with chlorophyll that carry out photosynthesis in the presence of light and air with concomitant production of oxygen? Was it a reduction in carbon-dioxide levels?

Geochemist David Schwartzman of Howard University and Ken Caldeira of the Climate and Carbon Cycle Group at Lawrence Livermore National Laboratory have a different view. Looking at how feedback operates in Earth systems, they propose that the transition from a carbon-dioxide dominated greenhouse world to one dominated by methane actually did the trick.

Schwartzman and Caldeira will present findings of their research on Monday, October 28, at the annual meeting of the Geological Society of America in Denver, CO.

It's been argued that surface temperatures of 80-60 degrees centigrade kept the lid on evolution during the carbon-dioxide dominated greenhouse world of 3.8 to 2.5 billion years ago.

Dominant forms of life were very simple, consisting of prokaryotes (cells without nuclei that reproduce asexually) and eucaryotes (more advanced cells with nuclei). Metazoa, the animal kingdom, did not emerge until 0.7 to 1.5 billion year ago, when temperatures apparently dropped below their upper limit.

"I have argued that primitive organisms emerged once their upper temperature limit was reached as the relatively high climatic temperatures of the Archean declined," says Schwartzman.

"It appeared likely that methane replaced carbon dioxide as the dominant gas in the greenhouse atmosphere of early Earth by about 2.8 billion years ago. So we began to look at the dynamics of methane dominance, reduced levels of CO2, reduced surface temperatures, and the appearance of cyanobacteria.

"The question that arose for me is, "Is it a coincidence that the first good evidence for methane as a significant component of Earth's atmosphere occurred at the same time as analogous evidence for the first cyanobacteria?"

Schwartzman and Caldeira followed up the proposal of Charles Dismukes and coworkers that now extinct bacteria were performing oxygen-based photosynthesis before cyanobacteria came onto the scene.

In a CO2 dominated world, these early oxygenic photosynthesizers split bicarbonate instead of water as the source of oxygen. They apparently boosted organic productivity and caused greater methane production by methanogens living in the ocean.

"It takes far less methane to maintain climatic temperatures than it does carbon dioxide," says Schwartzman.

As methane became dominant, CO2 levels dropped dramatically. Cyanobacteria then emerged and began oxygenic photosynthesis by splitting water as the source of oxygen. According to Schwartzman, only when atmospheric oxygen levels began to rise some 2.2 billion years ago did a CO2-concentrating mechanism emerge, an adaptation to declining CO2/02 ratios in the external environment.

Thus, global constraints on evolution appeared to have included carbon dioxide as well as oxygen levels in the atmosphere along with surface temperature. All the former have been strongly influenced by biological evolution in a complex set of feedbacks, an essential aspect of biospheric evolution.

"The classical paradigm of evolution, that changes in the local environment lead to natural selection, should be rethought to include these feedbacks on a global scale.

"We hope that our hypothesis will be tested by looking more closely at the extant geologic record of the proposed transition as well as the insights from the study of photosynthesis and molecular biology of modern organisms," says Schwartzman.

Community
Email This Article
Comment On This Article

Related Links
Howard University
Geological Society of America
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Explore The Early Earth at TerraDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Scientists Find Evidence For Crucial Root In The History Of Plant Evolution
New Orleans - Mar 26, 2003
If ancient plants had not migrated from the shallow seas of early Earth to the barren land of the continents, life as we know it might never have emerged. And now it appears this massive floral colonization may have been spurred by a single genetic mutation that allowed primitive plants to make lignin, a chemical process that leads to the formation of a cell wall.







  • 150-Ton Magnet Pulls World Toward New Energy Source
  • Biomass Hydrogen Conversion Breaks 100 Hour Operational Run
  • Reforms Urged In Arab Countries To Attract Energy Investments
  • Nasa To Test Microwave Effects On Plant Growth

  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought
  • Los Alamos Lab Working On Romanian Nuke Waste Site
  • Glitch-Plagued Czech Nuclear Plant Suffers Problems, Again
  • Glitch-Plagued Czech Nuclear Reactor Suffers Another Shutdown









  • Yeager To Retire From Military Flying After October Airshow
  • Boeing Signs Technology Development Agreement With JAI For Work On Sonic Cruiser
  • Boeing Sonic Cruiser Completes First Wind Tunnel Tests



  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement