Energy News  
Matter-Antimatter: New, Striking Difference Discovered

"By studying the decay of more than 200 million pairs of B and anti-B mesons, researchers have discovered indeed a new way in which matter-antimatter asymmetry occurs: it is the phenomenon known as CP direct violation, that takes place simply as a difference between the number of matter decays against the ones of antimatter."

Rome, Italy (SPX) Aug 03, 2004
If we can look at stars, planets and all living beings in the Universe, as well as ourselves, it's because, as theoretical physicists suggest, after the primordial cosmic explosion, the "Big Bang", matter has prevailed over antimatter originating Universe as we know it.

Today, the amazing idea that there is in nature an asymmetry between matter and antimatter, technically known as CP violation, has been confirmed by new, enthusiastic results reached by BaBar Collaboration, in which Infn is involved.

The present results, just published in the eminent journal "Physical Review Letters", concern in particular a new measurement that shows in an incontrovertible way a remarkable difference in behaviour between particle named B mesons and their antimatter counterpart, anti-B mesons.

These particles are produced by the PEP-II Collider of SLAC Laboratory, California, thanks to collisions between electron beams and their antimatter counterpart, positrons. As generated mesons are short-lived, they decay, that is to say they turn almost immediately in other subatomic particles.

And it is exactly in this turn that BaBar researchers have pointed out a difference in behaviour of particles and antiparticles. "If there were no difference between matter and antimatter, both the B mesons and the anti-B mesons would exhibit exactly the same pattern of decays. On the contrary, our new measurement shows an example of a large difference in decay rates", says Marcello Giorgi, spokesman of BaBar and researcher of Pisa Infn.

By studying the decay of more than 200 million pairs of B and anti-B mesons, researchers have discovered indeed a new way in which matter-antimatter asymmetry occurs: it is the phenomenon known as CP direct violation, that takes place simply as a difference between the number of matter decays against the ones of antimatter.

"We found 840 examples of the B meson decaying to a kaon and a pion, but only 646 examples for the anti-B. The new measurement is first of all a result of the outstanding performance of SLAC's PEP-II accelerator and the efficiency of BaBar detector", concludes Giorgi.

Physicists coming from several countries are involved in BaBar Collaboration and the role of Italian component is remarkable. Just think that the massive quantity of rough data produced by BaBar, at a rate of one TeraByte per day, that is to say one thousand billions bytes, have passed to Italy, where a primary process has occurred by the calculus centre of Padova Infn.

"For the Italian component of Infn, the second community in the Collaboration after the American, this is a very satisfactory result. Our contribute to the experiment is on a wide range."

"It goes indeed from the maintenance of the refined detectors that snap the short-lived meson B, to the enthusiastic commitment in the data analysis", adds Mauro Morandin, Padova Infn, who, with Francesco Forti, Pisa Infn, co-ordinates the about one hundred Italian physicists and engineers involved in BaBar.

"Gianluca Covato, a young researcher of La Sapienza University (Rome) and of Princeton University and Jim Olsen, of Princeton University, have coordinated the work that has leaded in record time to this result, one of the most important among the one hundred already published by the Collaboration", concludes Mauro Morandin.

As Johnatan Dorfan, Director of SLAC, declares "This observation is a significant step forward in assembling the pieces of the puzzle of matter versus antimatter in the Universe".

Community
Email This Article
Comment On This Article

Related Links
Stanford University
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nuclear Space Technology at Space-Travel.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Carina Nebula Dust Pillars Harbor Embedded Stars
Boulder CO (SPX) May 31, 2005
Astronomers using NASA's Spitzer Space Telescope have imaged a giant molecular cloud being shredded by howling stellar winds and searing radiation, exposing a group of towering dust pillars harboring infant stars, according to a University of Colorado at Boulder researcher.







  • Scientists Able To Harness Plankton Power
  • Asymmetric Feature Shows Puzzling Face For Superconductivity
  • Fuel Cells Possible For Portable Power
  • Gemz Uses Solar Cell Nano Films To Power Laptops Under Indoor Lighting

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • NASA To Award Contract For Aerospace Testing
  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement