Energy News
CHIP TECH
Leading quantum at an inflection point
The MIT Quantum Initiative is taking shape, leveraging quantum breakthroughs to drive the future of scientific and technological progress.

Leading quantum at an inflection point

by Staff Writers for MIT News
Cambridge, Massachusetts (SPX) Nov 11, 2025

Danna Freedman is seeking the early adopters. She is the faculty director of the nascent MIT Quantum Initiative, or QMIT. In this new role, Freedman is giving shape to an ambitious, Institute-wide effort to apply quantum breakthroughs to the most consequential challenges in science, technology, industry, and national security.

The interdisciplinary endeavor, the newest of MIT President Sally Kornbluth's strategic initiatives, will bring together MIT researchers and domain experts from a range of industries to identify and tackle practical challenges wherever quantum solutions could achieve the greatest impact.

"We've already seen how the breadth of progress in quantum has created opportunities to rethink the future of security and encryption, imagine new modes of navigation, and even measure gravitational waves more precisely to observe the cosmos in an entirely new way," says Freedman, the Frederick George Keyes Professor of Chemistry. "What can we do next? We're investing in the promise of quantum, and where the legacy will be in 20 years."

QMIT - the name is a nod to the "qubit," the basic unit of quantum information - will formally launch on Dec. 8 with an all-day event on campus. Over time, the initiative plans to establish a physical home in the heart of campus for academic, public, and corporate engagement with state-of-the-art integrated quantum systems. Beyond MIT's campus, QMIT will also work closely with the U.S. government and MIT Lincoln Laboratory, applying the lab's capabilities in quantum hardware development, systems engineering, and rapid prototyping to national security priorities.

"The MIT Quantum Initiative seizes a timely opportunity in service to the nation's scientific, economic, and technological competitiveness," says Ian A. Waitz, MIT's vice president for research. "With quantum capabilities approaching an inflection point, QMIT will engage students and researchers across all our schools and the college, as well as companies around the world, in thinking about what a step change in sensing and computational power will mean for a wide range of fields. Incredible opportunities exist in health and life sciences, fundamental physics research, cybersecurity, materials science, sensing the world around us, and more."

Identifying the right questions

Quantum phenomena are as foundational to our world as light or gravity. At an extremely small scale, the interactions of atoms and subatomic particles are controlled by a different set of rules than the physical laws of the macro-sized world. These rules are called quantum mechanics.

"Quantum, in a sense, is what underlies everything," says Freedman.

By leveraging quantum properties, quantum devices can process information at incredible speed to solve complex problems that aren't feasible on classical supercomputers, and to enable ultraprecise sensing and measurement. Those improvements in speed and precision will become most powerful when optimized in relation to specific use cases, and as part of a complete quantum system. QMIT will focus on collaboration across domains to co-develop quantum tools, such as computers, sensors, networks, simulations, and algorithms, alongside the intended users of these systems.

As it develops, QMIT will be organized into programmatic pillars led by top researchers in quantum including Paola Cappellaro, Ford Professor of Engineering and professor of nuclear science and engineering and of physics; Isaac Chuang, Julius A. Stratton Professor in Electrical Engineering and Physics; Pablo Jarillo-Herrero, Cecil and Ida Green Professor of Physics; William Oliver, Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science and professor of physics; Vladan Vuletic, Lester Wolfe Professor of Physics; and Jonilyn Yoder, associate leader of the Quantum-Enabled Computation Group at MIT Lincoln Laboratory.

While supporting the core of quantum research in physics, engineering, mathematics, and computer science, QMIT promises to expand the community at its frontiers, into astronomy, biology, chemistry, materials science, and medicine.

"If you provide a foundation that somebody can integrate with, that accelerates progress a lot," says Freedman. "Perhaps we want to figure out how a quantum simulator we've built can model photosynthesis, if that's the right question - or maybe the right question is to study 10 failed catalysts to see why they failed."

"We are going to figure out what real problems exist that we could approach with quantum tools, and work toward them in the next five years," she adds. "We are going to change the forward momentum of quantum in a way that supports impact."

The MIT Quantum Initiative will be administratively housed in the Research Laboratory of Electronics (RLE), with support from the Office of the Vice President for Research (VPR) and the Office of Innovation and Strategy.

QMIT is a natural expansion of MIT's Center for Quantum Engineering (CQE), a research powerhouse that engages more than 80 principal investigators across the MIT campus and Lincoln Laboratory to accelerate the practical application of quantum technologies.

"CQE has cultivated a tremendously strong ecosystem of students and researchers, engaging with U.S. government sponsors and industry collaborators, including through the popular Quantum Annual Research Conference (QuARC) and professional development classes," says Marc Baldo, the Dugald C. Jackson Professor in Electrical Engineering and director of RLE.

"With the backing of former vice president for research Maria Zuber, former Lincoln Lab director Eric Evans, and Marc Baldo, we launched CQE and its industry membership group in 2019 to help bridge MIT's research efforts in quantum science and engineering," says Oliver, CQE's director, who also spent 20 years at Lincoln Laboratory, most recently as a Laboratory Fellow. "We have an important opportunity now to deepen our commitment to quantum research and education, and especially in engaging students from across the Institute in thinking about how to leverage quantum science and engineering to solve hard problems."

Two years ago, Peter Fisher, the Thomas A. Frank (1977) Professor of Physics, in his role as associate vice president for research computing and data, assembled a faculty group led by Cappellaro and involving Baldo, Oliver, Freedman, and others, to begin to build an initiative that would span the entire Institute. Now, capitalizing on CQE's success, Oliver will lead the new MIT Quantum Initiative's quantum computing pillar, which will broaden the work of CQE into a larger effort that focuses on quantum computing, industry engagement, and connecting with end users.

The "MIT-hard" problem

QMIT will build upon the Institute's historic leadership in quantum science and engineering. In the spring of 1981, MIT hosted the first Physics of Computation Conference at the Endicott House, bringing together nearly 50 physics and computing researchers to consider the practical promise of quantum - an intellectual moment that is now widely regarded as the kickoff of the second quantum revolution. (The first was the fundamental articulation of quantum mechanics 100 years ago.)

Today, research in quantum science and engineering produces a steady stream of "firsts" in the lab and a growing number of startup companies.

In collaboration with partners in industry and government, MIT researchers develop advances in areas like quantum sensing, which involves the use of atomic-scale systems to measure certain properties, like distance and acceleration, with extreme precision. Quantum sensing could be used in applications like brain imaging devices that capture more detail, or air traffic control systems with greater positional accuracy.

Another key area of research is quantum simulation, which uses the power of quantum computers to accurately emulate complex systems. This could fuel the discovery of new materials for energy-efficient electronics or streamline the identification of promising molecules for drug development.

"Historically, when we think about the most well-articulated challenges that quantum will solve," Freedman says, "the best ones have come from inside of MIT. We're open to technological solutions to problems, and nontraditional approaches to science. In many respects, we are the early adopters."

But she also draws a sharp distinction between blue-sky thinking about what quantum might do, and the deeply technical, deeply collaborative work of actually drawing the roadmap. "That's the 'MIT-hard' problem," she says.

The QMIT launch event on Dec. 8 will feature talks and discussions featuring MIT faculty, including Nobel laureates and industry leaders.

Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
New wafer-scale memristor integration advances prospects for brain-inspired AI chips
Tokyo, Japan (SPX) Nov 12, 2025
A research team led by Professor Sanghyeon Choi from DGIST has achieved the mass-integration of memristors at wafer scale, marking a major development in semiconductor technology for artificial intelligence systems modeled after the human brain. The human brain contains approximately 100 billion neurons and 100 trillion synapses, permitting vast information storage and processing within a compact space. Research efforts in next-generation AI aim to replicate this efficient structure in "brain-like ... read more

CHIP TECH
'Trump is temporary': California governor Newsom seizes COP30 spotlight

Brazil's 'action agenda' at COP30 takes shape

Will EU's carbon border tax crash COP30 party?

China emissions peak likely closer to 2028: expert survey

CHIP TECH
High precision measurement advances fusion plasma diagnostics

Mechanical power by linking Earth's warmth to space

Recharge reactor extracts lithium from EV battery waste for direct reuse

AI energy demand in US proves minor climate impact

CHIP TECH
S.Africa seeks to save birds from wind turbine risks

Vertical wind turbines may soon power UK railways using tunnel airflow

Danish wind giant Orsted to cut workforce by a quarter

French-German duo wins mega offshore wind energy project

CHIP TECH
China emissions flat in third quarter as solar surges: study

PolyU team advances tandem solar cell efficiency and reliability targets

Enhanced solar water splitting achieved with MoS2 GaN nanorod heterostructures

Graphene solar cells promise long-lasting self-powered sensor networks

CHIP TECH
$450,000 gift fuels nuclear research at UTA

Post Weld Heat Treatment Agreement Signed for Hinkley Point C Secondary Coolant Welds

Advancing TRISO Fuel Manufacturing for Next Generation Reactors in France

Orano and Siteflow expand digital operations for nuclear sector fieldwork

CHIP TECH
Illinois team creates aviation fuel from food waste with circular economy benefits

Industrial microbe enables conversion of carbon monoxide to ethanol

Revolutionary microbe enables resilient renewable energy from food waste

Finnish carbon-neutral ferry aims to set global benchmark for shipping

CHIP TECH
Venezuela announces big military deployment to counter US presence

Greece woos US energy deals, as eco groups cry foul

Leaders turn up the heat on fossil fuels at Amazon climate summit

Trump grants Hungary exemption from Russian oil, gas sanctions

CHIP TECH
AI-generated disinformation tactics spotted ahead of COP30

'Moral failure': Leaders seek to rally world at Amazon climate talks

Facing climate 'overshoot', world heads into risky territory

Brazil's Lula urges less talk, more action at COP30 climate meet

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.