Energy News  
Laser Applications Heat Up For Carbon Nanotubes

Carbon nanotubes (top) are applied to a NIST-developed pyroelectric detector (bottom) that may improve thermal conductivity and resistance to laser damage.

Gaithersburg MD (SPX) Jan 27, 2005
Carbon nanotubes - a hot nanotechnology with many potential uses - may find one of its quickest applications in the next generation of standards for optical power measurements, which are essential for laser systems used in manufacturing, medicine, communications, lithography, space-based sensors and other technologies.

As described in a forthcoming paper in Applied Optics,* scientists at the National Institute of Standards and Technology (NIST) and the National Renewable Energy Laboratory have made prototype pyroelectric detectors coated with carbon nanotubes.

Pyroelectric detectors and other thermal detectors are the basis for all primary standards used to ensure that laser power and energy measurements are traceable to fundamental units.

The coating absorbs laser light and converts it to heat, which is conducted to a detector underneath made of pyroelectric material. The detector's rise in temperature generates a current, which is measured to determine the power of the laser.

Carbon nanotubes - tiny cylinders made of carbon atoms - conduct heat hundreds of times better than today's detector coating materials. Nanotubes are also resistant to laser damage and, because of their texture and crystal properties, absorb light efficiently.

Scientists hope that the nanotubes' resistance to aging and hardening will allow them to extend the range of NIST laser power standards to ultraviolet wavelengths, which would support the development and calibration of sensors for detecting chemical and biological weapons. The research also may contribute to the use of carbon nanotubes in fuel cells.

As described in the paper, the NIST-led research team was first to demonstrate the use of an airbrush technique to apply carbon nanotubes to a thermal detector.

The team also will report, at a workshop on carbon nanotubes at NIST Jan. 26-28, growing multiwalled nanotubes directly on detectors with a chemical vapor deposition process. The team is now measuring the optical and thermal properties of various tube compositions and topologies, using an unusual approach that is much faster than conventional methods.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Prof Develops Cancer Nanobomb
Newark DE (SPX) Oct 14, 2005
University of Delaware researchers are opening a new front in the war on cancer, bringing to bear new nanotechnologies for cancer detection and treatment and introducing a unique nanobomb that can literally blow up breast cancer tumors.







  • Following Nature's Lead, Scientists Seek Better Catalysts
  • Solar Array Demonstrates Commercial Potential At NASA Dryden
  • Analysis: China A New Factor In Oil Market
  • Walker's World: Struggle For Mastery In Asia

  • Tsunami Makes India's Nuke Workers Jittery
  • Japan Begins Controversial Uranium Test To Recycle Nuclear Fuel
  • Iran Makes Uranium Powder But Not Violating Nuclear Freeze - Diplomats
  • Brazil To Start Enriching Uranium Next Month: Official





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Military Sales Lift Lockheed Martin Profit To $372 Million
  • Asia Aviation To Defy Global Trend In 05
  • India Ruins Pakistan's F-16 Shopping Spree
  • NASA's Famed B-52B "Mothership" Aircraft To Retire

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement