Energy News  
Japanese-U.S. Alliance in X-Ray Astronomy


Greenbelt - February 4, 2000 -
Astro-E, the Japanese-U.S. X-ray spacecraft poised for a Feb. 8 launch, will showcase an entirely new technology in X-ray detection that not only will serve as a test bed for future missions but also will earn the distinction of being the coldest known object in space.

"This new mission allows us to apply a piece of whiz-bang new technology to the exploration of the universe," said Dr. Alan N. Bunner, Science Director of NASA's Structure and Evolution of the universe program.

The new instrument is the X-ray Spectrometer (XRS), developed jointly by NASA's Goddard Space Flight Center, Greenbelt, MD, and Japan's Institute of Space and Astronautical Science (ISAS).

The XRS measures the heat created by individual X-ray photons, as opposed to converting X-rays to electrical charges and then collecting that charge, which is the mechanism in other X-ray detectors.

Using this new technique, it is possible to measure the energies of individual X-rays with a precision approximately 10 times greater than with previous X-ray sensors.

To sense the heat of a single photon, however, the XRS detector must be cooled to an extremely low temperature, only 0.060 degrees Kelvin, or about - 460 degrees Fahrenheit.

This essentially makes the XRS detector the coldest object in space. The absence of all heat, called absolute zero, is 0.0 degree Kelvin; the coldest reaches of space are a balmy three degrees Kelvin.

"This increased precision for measuring X-rays should allow fundamental breakthroughs in our understanding of essentially all types of X-ray emitting sources, especially material very close to black holes and the X-ray emitting gas in the vast spaces between the individual galaxies that make up clusters of galaxies," said Dr. Richard Kelley, XRS Principal Investigator at Goddard.

Astro-E's targets include: clusters of galaxies; supermassive black holes; neutron stars; supernova remnants; stellar coronae of stars 10,000-times more active than our Sun; and a study of the history of how chemicals are made throughout the universe.

Astro-E is primarily a spectroscopy mission, which means the satellite's instruments will study the "colors" of X-ray light, much like a prism breaks visible light into the colors of the rainbow.

While the recently launched Chandra X-ray Observatory excels in producing X-ray images, Astro-E excels in producing spectra. In this regard, Astro-E complements Chandra, analyzing the light that Chandra sees and determining the temperature, velocity and composition of the gas producing those X-rays.

Along with the XRS are four X-ray Imaging Spectrometer (XIS) instruments, a collaboration among Japanese universities and institutions and the Massachusetts Institute of Technology Center for Space Research, and the Hard X-Ray Detector (HXD), built by the University of Tokyo and ISAS.

Both the XRS and XIS instruments will analyze X-ray photons focused by individual X-ray telescopes, built at Goddard by a team led by Dr. Peter J. Serlemitsos.

The imaging instrument utilizes detectors similar to those flown on ASCA, Astro-E's precursor, yet with twice the collection efficiency at certain X-ray wavelengths. The Hard X-Ray Detector will extend Astro-E's observation ability into the "hard" or higher-energy X-ray wavelengths with the highest sensitivity ever achieved.

 Astro-E will be launched on an M-V rocket from the Kagoshima Space Center, located on the southern tip of the Japanese island of Kyushu. The observatory's expected mission lifetime is five years (two years for the X-Ray Spectrometer, with the depletion of cryogenic gases).

Astro-E will attain a near-Earth circular orbit of approximately 341 miles (550 kilometers). Its payload weighs 3,630 pounds (1,650 kilograms), and measures 20.8 x 17.28 x 6.72 feet (6.5 x 5.4 x 2.1 meters).

With its official name to be bestowed after deployment, Astro-E will join the recently launched European X-ray Multi- Mirror Mission and NASA's Chandra X-ray Observatory, ushering in what many experts are calling the decade of X-ray astronomy.

Astro-E is the fifth in a series of Japanese satellites devoted to studying celestial X-ray sources. Previous missions are Hakucho, Tenma, Ginga, and ASCA. ASCA, launched Feb. 20, 1993 and formerly known as ASTRO-D, is still active.

  • ASTRO-E at ISAS
  • ASTRO-E at Goddard
  • Laboratory for High Energy Astrophysics

    Community
    Email This Article
    Comment On This Article

    Related Links
    Space



    Memory Foam Mattress Review
    Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
    XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


    Satellite Launch To Boost DTH In India
    Calcutta, India (SPX) Dec 28, 2005
    The successful launch Thursday of India's heaviest satellite from spaceport of Kourou in French Guyana may have boosted the country's space research efforts to yet another level, but it has also lifted the spirits of at least three Direct-To-Home televisions broadcasters, one of which has been waiting for years to launch its services in India.























  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement