Energy News  
Intermetallic Mystery Solved With Atomic Resolution Microscope

Atomic resolution Z-contrast image from the world's most powerful microscope of a non-defective region of Cr2Hf. In this view, the hafnium atoms appear yellow and the chromium atoms are red. Intermetallics could be the key to faster jets and more efficient car engines. But these heat-resistant, lightweight compounds have stumped scientists for decades. Why do so many break so easily? A team from Brown University, Oak Ridge National Laboratory, and UES Inc. used the world's most powerful electron microscope to see, for the first time, atomic details that may provide the answer for the most common class of intermetallics. Their results � which could open the door for new materials for commercial use � are published in the current issue of Science. Image credit: Sharvan Kumar.

Providence RI (SPX) Feb 07, 2005
Many intermetallics break easily. These compounds are typically stronger than simple metals at high temperatures. Yet they are almost as fragile as ceramics at room temperature. This fragility limits their commercial use.

But why do most intermetallics shatter? How can that be prevented?

In a new report in Science, researchers from Brown University, Oak Ridge National Laboratory and UES for the first time describe detailed atomic arrangements in Laves phases � the most common class of intermetallics. Their discovery may be the first step in explaining the origin of this brittleness in some of these compounds.

"It has long been known that a dislocation, or crystal defect, moves when force is applied to a material. The easier it is to move this defect, the less brittle the material will be," said Sharvan Kumar, professor of engineering at Brown University, who has studied Laves phases for more than a decade.

"In materials with complex crystal structures, such as Laves phases, the atomic arrangement around these defects, and how these defects move, are not well understood."

In the 1950s, a concept called "synchroshear" was proposed to explain how this defect moved in many complex structures. Under that theory, this movement is accomplished by coordinated shifting of atoms in two adjacent atomic layers. This synchronized movement is necessary to prevent atoms in one layer from colliding with atoms in the neighboring layer.

But because atoms are so tightly packed in compounds with complex structures, as they are in Laves phases, the theory could never be proven. There wasn't a microscope powerful enough to show, in clear detail, how the atoms behaved.

Enter Matthew Chisholm, a staff researcher at Oak Ridge National Laboratory. Chisholm uses a unique Z-contrast scanning transmission electron microscope (STEM) to study defects in materials.

The microscope was recently outfitted with an aberration-correction system, which corrects errors produced by imperfections in the electron lens. The system doubled the microscope's resolving ability, making it the most powerful electron microscope on the planet.

Even though atoms in the test material � the Laves phase Cr2Hf � were spaced less than one ten-billionth of a meter away, the microscope produced crisp images of atoms arranged in tidy columns. Scientists put sheared material in the microscope, saw the defects and analyzed them.

"Aberration-correction combined with direct Z-contrast imaging produces an ideal technique to study unknown defect structures," Chisholm said. "The resulting images have clearly shown for the first time that the accepted dislocation models built up over years of research on simple metals do not work in this more complex material."

Kumar, who coordinated the project, said careful examination confirmed that synchroshear did indeed occur. "This is a first in science," he said.

In the case of Laves phases, it is important to understand defect structures. With this knowledge, materials scientists may be able to identify methods that enhance their motion � and create intermetallic compounds that resist shattering.

The study illustrates the utility of Oak Ridge's STEM in studying a variety of crystal structures and defects. The findings could be applied to materials with other complex structures, such as other classes of intermetallics as well as ceramics, inorganic salts and others.

The late Peter Hazzledine of UES, a materials science research and development firm based in Dayton, Ohio, helped analyze and interpret the experimental results. Hazzledine was a leading authority on dislocation theory.

The U.S. Department of Energy's Office of Basic Energy Sciences, the National Science Foundation-sponsored Materials Research Science and Engineering Center at Brown University, and the U.S Air Force Research Laboratory funded the work.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NGC Chosen To Proceed With Developing Solid-State Laser Technology For Military Applications
Redondo Beach CA (SPX) Jan 09, 2006
Northrop Grumman Corporation has been selected to develop "military-grade," solid-state laser technology that is expected to pave the way for the U.S. military to incorporate high-energy laser systems across all services, including ships, manned and unmanned aircraft, and ground vehicles.







  • Tiny Superconductors Withstand Stronger Magnetic Fields
  • UPI Energy Watch
  • UPI Energy Watch
  • NETL And Carnegie Mellon Create New Paradigms For Hydrogen Production

  • Iran Says Ready To Sign Key Deal With Russian On Nuclear Plant
  • Tsunami Makes India's Nuke Workers Jittery
  • Japan Begins Controversial Uranium Test To Recycle Nuclear Fuel
  • Iran Makes Uranium Powder But Not Violating Nuclear Freeze - Diplomats





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Political Fur Flies Over Marine One Deal
  • Military Sales Lift Lockheed Martin Profit To $372 Million
  • Asia Aviation To Defy Global Trend In 05
  • India Ruins Pakistan's F-16 Shopping Spree

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement