Energy News
TECH SPACE
Imaging shows how solar-powered microbes turn CO2 into bioplastic
A scanning electron microscopy image shows bacterium Ralstonia eutropha cells on top of a bismuth vanadate semiconductor.
Imaging shows how solar-powered microbes turn CO2 into bioplastic
by David Nutt for Cornell Chronicle
Ithica NY (SPX) Jul 31, 2023

When considering ways to sustainably generate environmentally friendly products, bacteria might not immediately spring to mind.

However, in recent years scientists have created microbe-semiconductor biohybrids that merge the biosynthetic power of living systems with the ability of semiconductors to harvest light. These microorganisms use solar energy to convert carbon dioxide into value-added chemical products, such as bioplastics and biofuels. But how that energy transport occurs in such a tiny, complex system, and whether the process can be improved, is still unclear.

Cornell researchers have developed a multimodal platform to image these biohybrids with single-cell resolution, to better understand how they function and how they can be optimized for more efficient energy conversion.

The team's paper, "Single-Cell Multimodal Imaging Uncovers Energy Conversion Pathways in Biohybrids," published July 27 in Nature Chemistry. The co-lead authors are postdoctoral researcher Bing Fu and former postdoctoral researcher Xianwen Mao.

The project was led by Peng Chen, the Peter J.W. Debye Professor of Chemistry in the College of Arts and Sciences. The effort is an offshoot of a larger collaboration - with Tobias Hanrath, professor at the Smith School of Chemical and Biomolecular Engineering in Cornell Engineering, and Buz Barstow, Ph.D. '09, assistant professor of biological and environmental engineering in the College of Agriculture and Life Sciences - that was funded by the U.S. Department of Energy (DOE) to explore microscopic imaging of microbes as a way to advance bioenergy research.

Biohybrid research has typically been conducted with bacteria in bulk - essentially a large amount of cells in a bucket, Peng said - emphasizing the overall yield of the value-added chemicals and the collective behaviors of the cells, rather than the underlying mechanism that enables the complex chemical transformation.

"Biology is very heterogeneous. The individual cells are very different. Now, in order to interrogate it better, you really need to measure it at a single-cell level," Chen said. "This is where we come in. We provide quantitative assessments of protein behaviors and also a mechanistic understanding of how the electron transport occurs from the semiconductor to the bacteria cell."

The new platform combined multi-channel fluorescence imaging with photoelectrochemical current mapping to survey the bacterium Ralstonia eutropha. The platform was able to simultaneously image, track and quantitate multiple proteins in the cell while also measuring the flow of electrons, ultimately correlating the cellular protein properties and electron transport processes.

The researchers successfully differentiated the functional roles of two types of hydrogenases - one bound to the cell's membrane, and a soluble one in the cytoplasm - that help metabolize hydrogen and drive CO2 fixation. While the soluble hydrogenase is known to be critical for metabolizing hydrogen, the researchers found that the membrane-bound hydrogenase, while less important, actually facilitates the process and makes it more efficient.

In addition, the researchers obtained the first experimental evidence that the bacteria can uptake a large amount of electrons from semiconductor photocatalysts. The team measured the electron current and found it be three orders of magnitude larger than what scientists previously thought, which suggests that future bacteria strains could be engineered to improve the efficiency of energy conversion.

The researchers also discovered that membrane-bound and soluble hydrogenases play an important role in mediating the electron transport from the semiconductor into the cell. Meanwhile, not only can the cell accept electrons; it can also spit them out in the opposite direction, without the assistance of hydrogenases.

The imaging platform is generalizable enough that it can be used to study other biological-inorganic systems, including yeast, and for other processes, such as nitrogen fixation and pollutant removal.

"Our multimodal imaging platform is powerful, but it of course has its own limits," Chen said. "We can image and study proteins, but our approach does not allow us to analyze small molecule compositions. And so one can think about further integrating our approach with other techniques - for example, nanoscale mass spectrometry - so it would be really powerful. We're not there yet."

Co-authors include Hanrath and Barstow; postdoctoral researcher Youngchan Park; doctoral students Zhiheng Zhao, Tianlei Yan, Farshid Salimijazi, and Mokshin Suri; Danielle H. Francis, M.S. '17; Won Jung, Ph.D. '18; former postdoctoral researcher Wenjie Li; and laboratory technician Brooke Pian '13.

The research was supported by the DOE's Biomolecular Characterization and Imaging Science program.

The researchers made use of the Cornell Center for Materials Research Shared Facilities, which is supported through the National Science Foundation's MRSEC program.

Research Report:Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids

Related Links
Cornell University
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Billions of nanoplastics released when microwaving baby food containers
Lincoln NE (SPX) Jul 21, 2023
The fastest way to heat food and drink might also rank as the fastest route to ingesting massive quantities of minuscule plastic particles, says new research from the University of Nebraska-Lincoln. Experiments have shown that microwaving plastic baby food containers available on the shelves of U.S. stores can release huge numbers of plastic particles - in some cases, more than 2 billion nanoplastics and 4 million microplastics for every square centimeter of container. Though the health effects of ... read more

TECH SPACE
UK climate campaigners fear net zero policies under threat

Electrical fire sparks nationwide power outage in Iraq

U.S. pulls plug on incandescent light bulbs as new ban goes into effect

In a warming world, is an air-conditioned future inevitable?

TECH SPACE
MIT engineers create an energy-storing supercapacitor from ancient materials

New approach to fuel cell manufacturing could reduce cost, increase availability

Less power, lower emissions: improving AC technology

Fusion model hot off the wall

TECH SPACE
U.S. identifies three new areas for potential offshore wind energy development

Biden to visit Philly Shipyard to announce construction of offshore wind vessel

New transmission line to carry wind energy electricity from Wyoming to Nevada

Brazil faces dilemma: endangered macaw vs. wind farm

TECH SPACE
Solar batteries: a new material makes it possible to simultaneously absorb light and store energy

China's GalaxySpace Debuts Revolutionary Flexible Solar Wing Satellite

New robot boosts solar energy research

AI and satellite imagery transform solar energy potential mapping in China

TECH SPACE
Niger coup raises questions about uranium dependence

First US nuclear reactor in seven years goes online

Framatome's accident tolerant fuel technology one step closer to market readiness

EU says no uranium 'supply risk' after Niger coup

TECH SPACE
Harnessing synthetic biology to make sustainable alternatives to petroleum products

University of Illinois study finds turning food waste into bioenergy can become a profitable industry

New technology will let farmers produce their own fertilizer and e-fuels

Clean, sustainable fuels made 'from thin air' and plastic waste

TECH SPACE
UK to issue 'hundreds' of new oil, gas licences in North Sea

Berlin hails 'progress' in EU talks on hydrogen plants

Iraq and Kuwait seek to solve contested border issue

NASA Armstrong sensor technology helping turn oxygen into fuel

TECH SPACE
UAE vows to allow 'peaceful' assembly of climate activists at COP28

Asset managers not on track for climate target: report

Litigation increasingly used to fight climate change: UN

British professor elected to lead UN climate panel in key decade

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.