![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Washington DC (SPX) Sep 14, 2004 In an era of rising oil and gas prices, the possibility that there are untapped reserves is enticing. Since the first U.S. oil well hit pay dirt in 1859, commercially viable wells of oil and gas commonly have been drilled no deeper than 3 to 5 miles into Earth's crust. "These experiments point to the possibility of an inorganic source of hydrocarbons at great depth in the Earth -that is, hydrocarbons that come from simple reactions between water and rock and not just from the decomposition of living organisms," stated Dr. Russell Hemley of the Carnegie Institution's Geophysical Laboratory, and co-author of a study published in the September 13-17, early, on-line edition of the Proceedings of the National Academy of Sciences. Methane is the most abundant hydrocarbon in the Earth's crust and it is the main component of natural gas. Often, gas reserves are accompanied by liquid petroleum. However these reserves, at 3 to 5 miles beneath the surface, exist in relatively low-pressure conditions. Whether hydrocarbons exist deeper- and could even be formed from non-biological matter -has been the subject of much debate. As depth increases in the Earth, the pressures can become so crushing that molecules are squeezed into new forms and the temperature conditions are like an inferno making matter behave much differently. The team of scientists performed a series of experiments at Carnegie, the Carnegie-managed High Pressure Collaborative Access Team (HPCAT) at Argonne National Laboratory, and at Indiana University South Bend - together with calculations performed at Lawrence Livermore National Laboratory- to mimic conditions that occur in Earth's upper mantle, which underlies the crust at depths of about 12 to 37 miles (20 to 60 km) beneath the continents. With a diamond anvil cell, the scientists squeezed materials common at Earth's surface -iron oxide (FeO), calcite (CaCO3) and water - to pressures ranging from 50,000 to 110,000 times the pressure at sea level ( 5 to 11 gigapascals). They heated the samples using two techniques -focused laser light and the so-called resistive heating method - to temperatures up to 2,700 degrees F (1500 degrees C). The researchers found that methane formed by reducing the carbon in calcite over a wide range of temperatures and pressures. The best conditions were at temperatures and pressures of about 1000 degrees F and less than 70,000 times atmospheric pressure. Dr. Henry Scott, of Indiana University South Bend, related the significance of the experiments to conventional hydrocarbon resources: "Although it is well-established that commercial petroleum originates from the decay of once-living organisms, these results support the possibility that the deep Earth may produce abiogenic hydrocarbons of its own." "This paper is important," remarked Dr. Freeman Dyson, professor emeritus at the Institute for Advanced Study at Princeton who reviewed the study. "Not because it settles the question whether the origin of natural gas and petroleum is organic or inorganic, but because it gives us tools to attack the question experimentally. If the answer turns out to be inorganic, this has huge implications for the ecology and economy of our planet as well as for the chemistry of other planets." Community Email This Article Comment On This Article Related Links Carnegie Institution's Geophysical Lab Argonne National Lab SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Earth Observation News - Suppiliers, Technology and Application
![]() ![]() The importance of remotely sensed data and technologies to support natural disasters has prompted attention and action in Washington. New initiatives and legislation authorizing appropriations to the remote sensing industry will be discussed at Strategic Research Institute's U.S. Commercial Remote Sensing Industry conference, scheduled for February 9-10, 2006 in Washington D.C. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |