Energy News  
ENERGY TECH
New, greener fuel cells move step closer to reality
by Staff Writers
Cambridge UK (SPX) Jan 11, 2018


illustration only

A new design of algae-powered fuel cells that is five times more efficient than existing plant and algal models, as well as being potentially more cost-effective to produce and practical to use, has been developed by researchers at the University of Cambridge.

As the global population increases, so too does energy demand. The threat of climate change means that there is an urgent need to find cleaner, renewable alternatives to fossil fuels that do not contribute extensive amounts of greenhouse gases with potentially devastating consequences on our ecosystem. Solar power is considered to be a particularly attractive source as on average the Earth receives around 10,000 times more energy from the sun in a given time than is required by human consumption.

In recent years, in addition to synthetic photovoltaic devices, biophotovoltaics (BPVs, also known as biological solar-cells) have emerged as an environmentally-friendly and low-cost approach to harvesting solar energy and converting it into electrical current. These solar cells utilise the photosynthetic properties of microorganisms such as algae to convert light into electric current that can be used to provide electricity.

During photosynthesis, algae produce electrons, some of which are exported outside the cell where they can provide electric current to power devices. To date, all the BPVs demonstrated have located charging (light harvesting and electron generation) and power delivery (transfer to the electrical circuit) in a single compartment; the electrons generate current as soon as they have been secreted.

In a new technique described in the journal Nature Energy, researchers from the departments of Biochemistry, Chemistry and Physics have collaborated to develop a two-chamber BPV system where the two core processes involved in the operation of a solar cell - generation of electrons and their conversion to power - are separated.

"Charging and power delivery often have conflicting requirements," explains Kadi Liis Saar, of the Department of Chemistry.

"For example, the charging unit needs to be exposed to sunlight to allow efficient charging, whereas the power delivery part does not require exposure to light but should be effective at converting the electrons to current with minimal losses."

Building a two-chamber system allowed the researchers to design the two units independently and through this optimise the performance of the processes simultaneously.

"Separating out charging and power delivery meant we were able to enhance the performance of the power delivery unit through miniaturisation," explains Professor Tuomas Knowles from the Department of Chemistry and the Cavendish Laboratory.

"At miniature scales, fluids behave very differently, enabling us to design cells that are more efficient, with lower internal resistance and decreased electrical losses."

The team used algae that had been genetically modified to carry mutations that enable the cells to minimise the amount of electric charge dissipated non-productively during photosynthesis. Together with the new design, this enabled the researchers to build a biophotovoltaic cell with a power density of 0.5 W/m2, five times that of their previous design. While this is still only around a tenth of the power density provided by conventional solar fuel cells, these new BPVs have several attractive features, they say.

"While conventional silicon-based solar cells are more efficient than algae-powered cells in the fraction of the sun's energy they turn to electrical energy, there are attractive possibilities with other types of materials," says Professor Christopher Howe from the Department of Biochemistry.

"In particular, because algae grow and divide naturally, systems based on them may require less energy investment and can be produced in a decentralised fashion."

Separating the energy generation and storage components has other advantages, too, say the researchers. The charge can be stored, rather than having to be used immediately - meaning that the charge could be generated during daylight and then used at night-time.

While algae-powered fuel cells are unlikely to generate enough electricity to power a grid system, they may be particularly useful in areas such as rural Africa, where sunlight is in abundance but there is no existing electric grid system. In addition, whereas semiconductor-based synthetic photovoltaics are usually produced in dedicated facilities away from where they are used, the production of BPVs could be carried out directly by the local community, say the researchers.

"This a big step forward in the search for alternative, greener fuels," says Dr Paolo Bombelli, from the Department of Biochemistry.

"We believe these developments will bring algal-based systems closer to practical implementation."

Research Report: Saar, KL et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy; 9 Jan 2018; DOI: 10.1038/s41560-017-0073-0

ENERGY TECH
Study boosts hope for cheaper fuel cells
Houston TX (SPX) Jan 09, 2018
Nitrogen-doped carbon nanotubes or modified graphene nanoribbons may be suitable replacements for platinum for fast oxygen reduction, the key reaction in fuel cells that transform chemical energy into electricity, according to Rice University researchers. The findings are from computer simulations by Rice scientists who set out to see how carbon nanomaterials can be improved for fuel-cell ... read more

Related Links
University of Cambridge
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US energy watchdog rejects plan to subsidize coal, nuclear sectors

U.S. utility regulator ponders grid reliability

U.S. blizzard to test gas, electric markets

'Virtual gold' may glitter, but mining it can be really dirty

ENERGY TECH
Surprising discovery could lead to better batteries

The atomic dynamics of rare everlasting electric fields

Study boosts hope for cheaper fuel cells

HP recalls computer batteries over fire risk

ENERGY TECH
The wave power farm off Mutriku could improve its efficiency

Turkey gets European loan for renewable energy

Oil-rich Alberta sees momentum for wind energy

Construction to start on $160 million Kennedy Energy Park in North Queensland

ENERGY TECH
Building a new generation of self-healing solar cells

Urban Solar installs solar LED lighting along Vancouver Island pathways

Multi-model effort highlights progress, future needs in renewable energy modeling

Ukraine to launch its first solar plant at Chernobyl

ENERGY TECH
Framatome nuclear fuel contract with CNNC

Framatome pursues the industrial and technological adventure of the nuclear energy business

Struggling Westinghouse Electric sold to Brookfield for $4.6 bn

Russia to build nuclear power plant in Sudan

ENERGY TECH
Solid-state physics offers insights into dielectric properties of biomaterials

Rice U.'s one-step catalyst turns nitrates into water and air

Less chewing the cud, more greening the fuel

A new strategy for efficient hydrogen production

ENERGY TECH
Shell makes first North Sea oil and gas commitment in decades

Iran's leading cleric extends sympathies on Sanchi tragedy

North Sea industries could adapt and thrive during oil field maturation

Moody's sees headwinds for Middle East economies

ENERGY TECH
1.5 C climate goal 'unlikely' but doable: draft UN report

Researchers use global thermometer to track temperature extremes, droughts

Colorado's governor sees climate efforts as an economic engine

Trump says US could 'conceivably' return to Paris climate deal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.