Energy News  
Geobiologists Create Novel Method For Studying Ancient Life Forms

illustration only

Pasadena CA (SPX) Sep 01, 2004
Geobiologists announced on August 22 their first major success in using a novel method of "growing" bacteria-infested rocks in order to study early life forms. The research could be a significant tool for use in better understanding the history of life on Earth, and perhaps could also be useful in astrobiology.

Reporting in the August 23 edition of the journal Geology, California Institute of Technology geobiology graduate student Tanja Bosak and her coauthors describe their success in growing calcite crusts in the presence and absence of a certain bacterium in order to show that tiny pores found in such rocks can be definitively attributed to microbial presence.

Micropores have long been known to exist in certain types of carbonate rocks that built up in the oceans millions of years ago, but researchers have never been able to say much more than that the pores were likely caused by microbes.

The new results show that there is a definite link between microbes and micropores.

In the experiment, Bosak and her colleagues grew a bacterium known as Desulfovibrio desulfuricans in a supply of nutrients, calcium, and bicarbonate that built up just like a carbonate deposit in the ancient oceans.

The mix that contained the bacteria tended to form rock with micropores in recognizable patterns, while the "sterile" mix did not.

"Ours is a very reductionist approach," says Dianne Newman, the Clare Boothe Luce Assistant Professor of Geobiology and Environmental Science and Engineering at Caltech and a coauthor of the paper.

"This work shows that you can study a single species to see how it behaves in a controlled environment, and from that draw conclusions that apply to the rock record. The counterpart is to go to nature and infer what's going on in a system you can't control."

"We were primarily interested in directly observing how the microbes disrupt the crystal growth of the carbonate rocks," adds Bosak.

In essence, the microbes are large enough to displace a bit of "real estate" with their bodies, resulting in a tiny cavity that is left behind in the permanent record.

The micropores in the study tend to be present throughout the crystals, and they not only mirror the shape and size of the bacteria, but also tend to form characteristic swirling patterns. If the micropores had been formed by some kind of nonliving particles, the patterns would likely not be present.

The next step in the research is to run the growth experiments with photosynthetic microbes. The information could help scientists determine which shapes found in certain types of rocks can be used as evidence of early life on Earth.

In the future, the information could also be used to study samples from other rocky planets and moons for evidence of primitive life.

Primarily, however, Newman says the technique will be of immediate benefit in studying Earth. "If you really want to look at life billions of years ago, in the Precambrian, you need to study microbial life.

"Even today the diversity of life is predominantly microbial," Newman adds, "so if we expand our perspective of what life is beyond macroscopic organisms, it's clear that microbes have been the dominant life form throughout Earth history."

In addition to Bosak and Newman, the other authors of the paper are Frank Corsetti of USC's department of earth sciences, and Virginia Souza-Egipsy of USC and the Center of Astrobiology in Madrid, Spain.

The paper is titled "Micron-scale porosity as a biosignature in carbonate crusts," and is available online at http://www.gsajournals.org/ .

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Dirt, rocks and all the stuff we stand on firmly



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Magnetic Reconnection Region Larger Than 2.5 Million Km Found In The Solar Wind
Paris (ESA) Jan 12, 2006
Using the ESA Cluster spacecraft and the NASA Wind and ACE satellites, a team of American and European scientists have discovered the largest jets of particles created between the Earth and the Sun by magnetic reconnection. This result makes the cover of this week's issue of Nature.







  • ET, Don't Phone Home; Drop A Line Instead
  • NIST Unveils Chip-Scale Atomic Clock
  • Analysis: Nuclear Power Gaining Popularity
  • Vast New Energy Source Almost Here

  • Yucca Mountain Site Must Make Use Of Geological Safety Net
  • New Jersey Physicist Uncovers New Information About Plutonium
  • Complex Plant Design Goes Virtual To Save Time And Money
  • Volcanic Hazard At Yucca Mountain Greater Than Previously Thought





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • NASA To Award Contract For Aerospace Testing
  • Sonic Boom Modification May Lead To New Era
  • Hewitt Pledges Support For Aerospace Industry
  • National Consortium Picks Aviation Technology Test Site

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement