Energy News  
ENERGY TECH
From waste heat to electrical power: A new generation of thermomagnetic generators
by Staff Writers
Karlsruher, Germany (SPX) Feb 04, 2021

The thermomagnetic generators are based on magnetic thin films with highly temperature-dependent properties.

Use of waste heat contributes largely to sustainable energy supply. Scientists of Karlsruhe Institute of Technology (KIT) and Tohoku University in Japan have now come much closer to their goal of converting waste heat into electrical power at small temperature differences. As reported in Joule, electrical power per footprint of thermomagnetic generators based on Heusler alloy films has been increased by a factor of 3.4.

Many technical processes only use part of the energy consumed. The remaining fraction leaves the system in the form of waste heat. Frequently, this heat is released into the environment unused. However, it can also be used for heat supply or power generation. The higher the temperature of the waste heat is, the easier and cheaper is its reuse.

Thermoelectric generators can use waste heat of low temperature for direct conversion into electrical power. Thermoelectric materials used so far, however, have been expensive and sometimes even toxic. Moreover, thermoelectric generators require large temperature differences for reaching efficiencies of just a few percent.

Thermomagnetic generators represent a promising alternative. They are based on alloys, whose magnetic properties are highly temperature-dependent. Alternating magnetization induces an electrical voltage in a coil applied. Researchers presented first concepts of thermomagnetic generators in the 19th century already. Since then, research has covered a variety of materials. Electrical power, however, has left a lot to be desired.

Scientists of KIT's Institute of Microstructure Technology (IMT) and T?hoku University in Japan have now succeeded in largely increasing the electrical power per footprint of thermomagnetic generators. "Based on the results of our work, thermomagnetic generators are now competitive with established thermoelectric generators for the first time.

With this, we have come a lot closer to the goal of converting waste heat into electrical power at small temperature differences," says Professor Manfred Kohl, Head of the Smart Materials and Devices Group of IMT. Work of the team is reported in the cover story of the latest issue of Joule.

Vision: Recovery of Waste Heat Close to Room Temperature
So-called Heusler alloys - magnetic intermetallic compounds - are applied in the form of thin films in thermomagnetic generators and provide for a big temperature-dependent change of magnetization and quick heat transfer. This is the basis of the new concept of resonant self-actuation. Even at small temperature differences, resonant vibrations are induced in devices and can be converted efficiently into electrical power.

Still, electrical power of single devices is low and upscaling will depend on material development and engineering. The researchers of KIT and Tohoku University used a nickel-manganese-gallium alloy and found that alloy film thickness and the device footprint influence electrical power in opposite directions.

Based on this finding, they succeeded in improving electrical power per footprint by a factor of 3.4 by increasing the thickness of the alloy film from five to 40 micrometers. The thermomagnetic generators reached a maximum electrical power of 50 microwatts per square centimeter at a temperature change of just three degrees Celsius.

"These results pave the way to the development of customized thermomagnetic generators connected in parallel for potential use of waste heat close to room temperature," Kohl explains.

Research Report: "Upscaling of Thermomagnetic Generators Based on Heusler Alloy Films"


Related Links
Karlsruher Institut FUr Technologie
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Physicists create tunable superconductivity in twisted graphene "nanosandwich"
Boston MA (SPX) Feb 02, 2021
When two sheets of graphene are stacked atop each other at just the right angle, the layered structure morphs into an unconventional superconductor, allowing electric currents to pass through without resistance or wasted energy. This "magic-angle" transformation in bilayer graphene was observed for the first time in 2018 in the group of Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. Since then, scientists have searched for other materials that can be similarly twisted ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Getting to net zero and even negative is surprisingly feasible, and affordable

BlackRock pushes companies to set more ambitious climate targets

Rich nations 'hugely exaggerate' climate finance: study

China to launch carbon emissions trading scheme next month

ENERGY TECH
Batteries that can be assembled in ambient air

UMass Amherst researchers discover materials capable of self-propulsion

X-ray tomography helps reveal how solid state batteries charge, discharge

Physicists create tunable superconductivity in twisted graphene "nanosandwich"

ENERGY TECH
Magnora enters partnership to establish floating wind company

Renewables become biggest UK electricity source: study

Deutsche WindGuard unlocks complex wind sites with ZX Lidars

Wind powers more than half of UK electricity for first time

ENERGY TECH
Geoforce introduces the next generation of maintenance-free, solar-powered rugged asset tracking solutions

Machine-learning to predict the performance of organic solar cells

Lunar solar experiment build completed despite challenges

Scientists develop perovskite solar modules with greater size, power and stability

ENERGY TECH
Optimized LIBS technique improves analysis of nuclear reactor materials

Estonia's geology holds promise for nuclear waste disposal

France's EDF delays UK nuclear plant, as cost soars

Atomic design for a carbon-free planet

ENERGY TECH
Most forest biomass worse for climate than fossil fuels

Australia supplying wood pellets for the Japanese electricity market

Key switchgrass genes identified, which could mean better biofuels ahead

Abandoned cropland should produce biofuels

ENERGY TECH
Ural Federal University scientists discover ways to increase oil production efficiency

Hydrogen to cut Swedish national GHG-emissions by 30 per cent

New catalyst moves seawater desalination, hydrogen production closer to commercialization

Exxon Mobil reports huge 2020 loss as changes draw mixed reviews

ENERGY TECH
Two-thirds of world see 'climate emergency': UN survey

US will work with China on climate despite other differences: Kerry

Biden says US will lead way on 'existential' climate crisis

Kerry 'regrets' US absence from climate fight









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.