![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Paris - Dec 2, 2002 Internet traffic jams may become history if ESA succeeds in developing new technology to see nearby Earth-sized planets. Why? In looking for new ways to detect planets ESA is thinking that, instead of bulky mirrors and lenses in space, one can build miniaturised optical systems that fit onto a microchip. Such 'integrated optics' would also allow earthly computer networks to use high-speed routing of data streams as a natural spin-off. Data moving around the Internet are like road traffic in that a car can be driven fast down a straight road but has to slow down a great deal when changing direction at a junction. The same thing happens on information highways. Beams of light carry data along fibre-optic cables at very high speeds. When the data arrive at computers, known as servers, the servers redirect them to their final destinations. Presently, you need to convert the light signals into electricity, and that slows everything down. Electrons move at a speed of a few kilometres per second through a circuit, whereas light travels at nearly 300,000 kilometres per second. Integrated optics would leave the data as light and simply channel it through the chip, in the right direction. Scientists call this area integrated optics, referring to the integrated circuit board on which chips are mounted. Instead of miniaturised electronics, however, miniaturised optics are placed on a microchip. ESA has a strategy to enable more sophisticated searches for extra-solar planets in the future. Two planned developments rely on combining the light from such planets in a number of different telescopes. These are the Darwin mission and its precursor, the ESA/ESO Ground-based European Nulling Interferometer Experiment (GENIE).
![]() ![]() ![]()
|