Energy News  
ENERGY TECH
First glimpse of polarons forming in a promising next-gen energy material
by Staff Writers
Stanford CA (SPX) Jan 05, 2021

stock illustration only

Polarons are fleeting distortions in a material's atomic lattice that form around a moving electron in a few trillionths of a second, then quickly disappear. As ephemeral as they are, they affect a material's behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab.

Now scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have used the lab's X-ray laser to watch and directly measure the formation of polarons for the first time. They reported their findings in Nature Materials.

"These materials have taken the field of solar energy research by storm because of their high efficiencies and low cost, but people still argue about why they work," said Aaron Lindenberg, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC and associate professor at Stanford who led the research.

"The idea that polarons may be involved has been around for a number of years," he said. "But our experiments are the first to directly observe the formation of these local distortions, including their size, shape and how they evolve."

Exciting, complex and hard to understand
Perovskites are crystalline materials named after the mineral perovskite, which has a similar atomic structure. Scientists started to incorporate them into solar cells about a decade ago, and the efficiency of those cells at converting sunlight to energy has steadily increased, despite the fact that their perovskite components have a lot of defects that should inhibit the flow of current.

These materials are famously complex and hard to understand, Lindenberg said. While scientists find them exciting because they are both efficient and easy to make, raising the possibility that they could make solar cells cheaper than today's silicon cells, they are also highly unstable, break down when exposed to air and contain lead that has to be kept out of the environment.

Previous studies at SLAC have delved into the nature of perovskites with an "electron camera" or with X-ray beams. Among other things, they revealed that light whirls atoms around in perovskites, and they also measured the lifetimes of acoustic phonons - sound waves - that carry heat through the materials.

For this study, Lindenberg's team used the lab's Linac Coherent Light Source (LCLS), a powerful X-ray free-electron laser that can image materials in near-atomic detail and capture atomic motions occurring in millionths of a billionth of a second. They looked at single crystals of the material synthesized by Associate Professor Hemamala Karunadasa's group at Stanford.

They hit a small sample of the material with light from an optical laser and then used the X-ray laser to observe how the material responded over the course of tens of trillionths of a second.

Expanding bubbles of distortion
"When you put a charge into a material by hitting it with light, like what happens in a solar cell, electrons are liberated, and those free electrons start to move around the material," said Burak Guzelturk, a scientist at DOE's Argonne National Laboratory who was a postdoctoral researcher at Stanford at the time of the experiments.

"Soon they are surrounded and engulfed by a sort of bubble of local distortion - the polaron - that travels along with them," he said. "Some people have argued that this 'bubble' protects electrons from scattering off defects in the material, and helps explain why they travel so efficiently to the solar cell's contact to flow out as electricity."

The hybrid perovskite lattice structure is flexible and soft - like "a strange combination of a solid and a liquid at the same time," as Lindenberg puts it - and this is what allows polarons to form and grow.

Their observations revealed that polaronic distortions start very small - on the scale of a few angstroms, about the spacing between atoms in a solid - and rapidly expand outward in all directions to a diameter of about 5 billionths of a meter, which is about a 50-fold increase. This nudges about 10 layers of atoms slightly outward within a roughly spherical area over the course of tens of picoseconds, or trillionths of a second.

"This distortion is actually quite large, something we had not known before," Lindenberg said. "That's something totally unexpected."

He added, "While this experiment shows as directly as possible that these objects really do exist, it doesn't show how they contribute to the efficiency of a solar cell. There's still further work to be done to understand how these processes affect the properties of these materials."

Research paper


Related Links
SLAC National Accelerator Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Brazilian researcher experiments with electron-plasma interactions
Sao Paulo, Brazil (SPX) Dec 22, 2020
A paper on research conducted by Meirielen Caetano de Sousa, postdoctoral fellow at the University of Sao Paulo's Physics Institute (IF-USP) in Brazil, is highlighted as Editor's Pick in the September issue of Physics of Plasmas, published by the American Institute of Physics with the cooperation of The American Physical Society. The paper, entitled "Wave-particle interactions in a long traveling wave tube with upgraded helix", is signed by Sousa, Ibere Caldas, her supervisor at IF-USP, and collab ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Germany rings in 2021 with CO2 tax, coal phase-out

2020 emissions: precedent-setting or bucking the trend?

Courts summoned to rule on climate change

Japan unveils green growth plan for 2050 carbon neutral goal

ENERGY TECH
Bionic idea boosts lithium-ion extraction

Novel public-private partnership facilitates development of fusion energy

Indonesia in $9.8 bln electric vehicle battery deal with Korea's LG

Waste to treasure: Crayfish shells to store energy

ENERGY TECH
Wind powers more than half of UK electricity for first time

ACWA Power signs three agreements for the first foreign investment based independent wind power project in Azerbaijan

Norway launches major wind power research centre

Supersized wind turbines generate clean energy - and surprising physics

ENERGY TECH
KDC Solar Completes 1.6-Megawatt Solar Power Carport System for CentraState Medical

Trina Solar Vertex Super Factory: The power inside

Peachtree Corners gets first road surface solar panels on autonomous vehicle lane

Utica Leaseco agrees to Ubiquity Solar acquiring rights to Alta Devices assets

ENERGY TECH
Slovenia restarts nuclear plant after Croatia quake

Slovenia nuclear plant shut after Croatia earthquake

Ukraine to stop sending spent nuclear fuel to Russia

Russian nuclear-powered ship turns back after emergency repairs

ENERGY TECH
Cornell University to extract energy from manure to meet peak heating demands

Scientists suggested a method to improve performance of methanol fuel cells

Shedding light on the dark side of biomass burning pollution

Applying compost to landfills could have environmental benefits

ENERGY TECH
Iran energy minister in Baghdad over trade dispute

Turkish defence minister in Libya to discuss cooperation

Nanoparticles could improve oil production

U.S. submarine transits Strait of Hormuz as Middle East tensions rise

ENERGY TECH
GAO: Defense Dept. needs to better track climate change protections

Climate change caused the demise of Central Asia's river civilizations, not Genghis Khan

Error correction means California's future wetter winters may never come

Case studies show climate variation linked to rise and fall of medieval nomadic empires









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.