First glimpse of polarons forming in a promising next-gen energy material by Staff Writers Stanford CA (SPX) Jan 05, 2021
Polarons are fleeting distortions in a material's atomic lattice that form around a moving electron in a few trillionths of a second, then quickly disappear. As ephemeral as they are, they affect a material's behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab. Now scientists at the Department of Energy's SLAC National Accelerator Laboratory and Stanford University have used the lab's X-ray laser to watch and directly measure the formation of polarons for the first time. They reported their findings in Nature Materials. "These materials have taken the field of solar energy research by storm because of their high efficiencies and low cost, but people still argue about why they work," said Aaron Lindenberg, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC and associate professor at Stanford who led the research. "The idea that polarons may be involved has been around for a number of years," he said. "But our experiments are the first to directly observe the formation of these local distortions, including their size, shape and how they evolve."
Exciting, complex and hard to understand These materials are famously complex and hard to understand, Lindenberg said. While scientists find them exciting because they are both efficient and easy to make, raising the possibility that they could make solar cells cheaper than today's silicon cells, they are also highly unstable, break down when exposed to air and contain lead that has to be kept out of the environment. Previous studies at SLAC have delved into the nature of perovskites with an "electron camera" or with X-ray beams. Among other things, they revealed that light whirls atoms around in perovskites, and they also measured the lifetimes of acoustic phonons - sound waves - that carry heat through the materials. For this study, Lindenberg's team used the lab's Linac Coherent Light Source (LCLS), a powerful X-ray free-electron laser that can image materials in near-atomic detail and capture atomic motions occurring in millionths of a billionth of a second. They looked at single crystals of the material synthesized by Associate Professor Hemamala Karunadasa's group at Stanford. They hit a small sample of the material with light from an optical laser and then used the X-ray laser to observe how the material responded over the course of tens of trillionths of a second.
Expanding bubbles of distortion "Soon they are surrounded and engulfed by a sort of bubble of local distortion - the polaron - that travels along with them," he said. "Some people have argued that this 'bubble' protects electrons from scattering off defects in the material, and helps explain why they travel so efficiently to the solar cell's contact to flow out as electricity." The hybrid perovskite lattice structure is flexible and soft - like "a strange combination of a solid and a liquid at the same time," as Lindenberg puts it - and this is what allows polarons to form and grow. Their observations revealed that polaronic distortions start very small - on the scale of a few angstroms, about the spacing between atoms in a solid - and rapidly expand outward in all directions to a diameter of about 5 billionths of a meter, which is about a 50-fold increase. This nudges about 10 layers of atoms slightly outward within a roughly spherical area over the course of tens of picoseconds, or trillionths of a second. "This distortion is actually quite large, something we had not known before," Lindenberg said. "That's something totally unexpected." He added, "While this experiment shows as directly as possible that these objects really do exist, it doesn't show how they contribute to the efficiency of a solar cell. There's still further work to be done to understand how these processes affect the properties of these materials."
Brazilian researcher experiments with electron-plasma interactions Sao Paulo, Brazil (SPX) Dec 22, 2020 A paper on research conducted by Meirielen Caetano de Sousa, postdoctoral fellow at the University of Sao Paulo's Physics Institute (IF-USP) in Brazil, is highlighted as Editor's Pick in the September issue of Physics of Plasmas, published by the American Institute of Physics with the cooperation of The American Physical Society. The paper, entitled "Wave-particle interactions in a long traveling wave tube with upgraded helix", is signed by Sousa, Ibere Caldas, her supervisor at IF-USP, and collab ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |