Energy News  
ESA Accelerates Towards A New Space Thruster

Helicon reactor in operation. Credits: LPTP, Ecole Polytechnique.

Paris (ESA) Dec 14, 2005
ESA has confirmed the principle of a new space thruster that may ultimately give much more thrust than today's electric propulsion techniques. The concept is an ingenious one, inspired by the northern and southern aurorae, the glows in the sky that signal increased solar activity.

"Essentially the concept exploits a natural phenomenon we see taking place in space,� says Dr Roger Walker of ESA's Advanced Concepts Team.

"When the solar wind, a 'plasma' of electrified gas released by the Sun, hits the magnetic field of the Earth, it creates a boundary consisting of two plasma layers. Each layer has differing electrical properties and this can accelerate some particles of the solar wind across the boundary, causing them to collide with the Earth's atmosphere and create the aurora."

In essence, a plasma double layer is the electrostatic equivalent of a waterfall. Just as water molecules pick up energy as they fall between the two different heights, so electrically charged particles pick up energy as they travel through the layers of different electrical properties.

Researchers Christine Charles and Rod Boswell at the Australian National University in Canberra, first created plasma double layers in their laboratory in 2003 and realised their accelerating properties could enable new spacecraft thrusters. This led the group to develop a prototype called the Helicon Double Layer Thruster.

The new ESA study, performed as part of ESA's Ariadna academic research programme in association with Ecole Polytechnique, Paris, confirms the Australian findings by showing that under carefully controlled conditions, the double layer could be formed and remains stable, allowing the constant acceleration of charged particles in a beam. The study also confirmed that stable double layers could be created with different propellant gas mixtures.

"The collaboration has been absolutely excellent,� says Dr Pascal Chabert, of Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique. "It has been a real kick-off for me and has given me lots of new ideas for plasma propulsion concepts to investigate with the Advanced Concepts Team. The new direction for our laboratory had led to a patent on a promising new electric propulsion device called an Electronegative Plasma Thruster.�

To create the double layer, Chabert and colleagues created a hollow tube around which was wound a radio antenna. Argon gas was continuously pumped into the tube and the antenna transmitted helicoidal radio waves of 13 megahertz. This ionised the argon creating a plasma.

A diverging magnetic field at the end of the tube then forced the plasma leaving the pipe to expand. This allowed two different plasmas to be formed, upstream within the tube and downstream, and so the double layer was created at their boundary. This accelerated further argon plasma from the tube into a supersonic beam, creating thrust.

Calculations suggest that a helicon double layer thruster would take up a little more space than the main electric thruster on ESA's SMART-1 mission, yet it could potentially deliver many times more thrust at higher powers of up to 100 kW whilst giving a similar fuel efficiency.

In the next steps, ESA will now construct a detailed computer simulation of the plasma in and around the thruster and use the laboratory results to verify its accuracy, so that the in-space performance can be fully assessed and larger high power experimental thrusters can be investigated in the future.

Community
Email This Article
Comment On This Article

Related Links
Plasma Research Laboratory of ANU
LPTP
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Rocket Science News at Space-Travel.Com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Successful First Test For Vega's Zefiro 9 Engine
Paris, France(ESA) Dec 28, 2005
Flames, smoke and a deafening noise accompanied the first firing test of Vega's Zefiro 9 third-stage solid rocket motor. A first examination of the data indicates that everything went well at the test carried out yesterday at Salto de Quirra in southeast Sardinia.







  • Portugal Turns To Wind, Waves And Sun To Reduce Oil Dependence
  • OPEC Hawks Play Nice Guys
  • Paper-Thin, Foldable Battery To Attach To Clothes
  • New Paper Thin Foldable Battery Developed To Attach To Clothes

  • World Opinion Against The Building Of New Nuclear Plants: IAEA
  • Storage Of Spent Nuclear Fuel From Australia Illegal Says French Court
  • Ukraine Considers Storing Foreign Nuclear Waste At Chernobyl
  • Chinese PM Eyes Nuclear Future In France

  • What Is A Cloud
  • Getting To The TOPP Of Houston's Air Pollution
  • Scientists Seek Sprite Light Source

  • ESA Presents Space Solution To Montreal Forest Conference
  • Modern Forests Suffer From Century Old Logging Legacy
  • Tree Species Regulate Themselves In Ecological Communities
  • Tropical Dry Forests Receive International Recognition

  • French Court Decides Activists' Destruction Of GM Crops Was Justified
  • Fishing Inland Waters Putting Pressure On Fish Stocks
  • Ancient Canals Reveal Underpinnings Of Early Andean Civilization
  • Oil Mist Reduces Airborne Hazards In Concentrated Swine Feeding Operation

  • GM Hires Russian Nuclear Scientists To Develop New Auto Technology
  • Japan Creates The World's Fastest Electric Sedan
  • Motorists To Pay 'Congestion' Charge Over Broader Swath Of London
  • Solar Cars Driving Towards A Hydrogen Future

  • FAA, LockMart Complete National Rollout Of New Radar Data Communications Gateway
  • Anti-Missile Protection: Who Will Pay?
  • US Air Force Releases New Mission Statement
  • EADS Says A320 Contract With China Worth 7-8 Billion Dollars

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement