![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
San Diego CA (SPX) Mar 21, 2005 Touch the tines of a tuning fork and it goes silent. Scientists have faced a similar problem trying to harness the strength and conductivity of carbon nanotubes, regarded as material of choice for the next generation of everything from biosensors to pollution-trapping sponges. Leonard Fifield, a staff scientist at the Department of Energy's Pacific Northwest National Laboratory in Richland, Washington, and colleagues at PNNL and the University of Washington say they can now control the deposition of anchors on a carbon nanotube, 10,000 times smaller than a human hair, without muting the nanotube's promising physical properties. Last week, Fifield reported the group's findings at the American Chemical Society national meeting. In the decade since the synthesis of the first carbon nanotubes, researchers have attached molecules - intended to be the "feelers" for picking up chemical sensations and passing the information to the nanotube - using techniques that call for strong acidity and other harsh conditions that compromise the material's utility. "Usually, people use an organic solution of anchors and incubate the nanotubes in the solution to deposit the anchors," Fifield said. "This method allows little control over the level of anchor loading. Our innovation is the use of supercritical fluids - carbon dioxide, with both liquid and gas properties - for anchor deposition." Their technique enables them "to deposit anchors on a wide variety of nanotube sample types, including those not easily incubated in solution," Fifield said. "It also enables us to control how much of a nanotube surface is coated with molecules and the thickness of the coating." Community Email This Article Comment On This Article Related Links DOE/Pacific Northwest National Lab SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
![]() ![]() One of the single biggest applications of nanotechnology could be solving the global shortage of pure water, experts told UPI's Nano World. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |