Energy News  
Combined Therapies Assists Long-Term Protection Against Brain Tumors

File photo: Scan of brain tumour.
by Staff Writers
Los Angeles CA (SPX) Sep 04, 2006
One therapy for treating brain tumors alerts the immune system to the presence of foreign material. A second therapy enhances the first and prolongs the immune system's response. Now, in an animal study conducted at Cedars-Sinai Medical Center's Maxine Dunitz Neurosurgical Institute, researchers have combined the two in a form that appears effective when injected directly into a malignant brain tumor.

The result, extended length of survival, even after "rechallenge," is detailed in the Sept. 1 issue of the journal Cancer Research.

Dendritic cell immunotherapy, pioneered at the Institute in the treatment of deadly, recurring brain tumors called gliomas, is one component of the experimental procedure. The treatment is usually performed after a patient's tumor has been surgically removed. Proteins from the tumor are collected, cultured and introduced in a Petri dish to dendritic cells taken from the patient's blood. The "new" dendritic cells are then injected into the patient's bloodstream. When they encounter lingering tumor cells, they initiate an immune response.

Dendritic cells are specialized "antigen-presenting cells" responsible for alerting the immune system to foreign matter and eliciting an attack. They normally exist in the body to clear debris, such as dead cells, detecting antigens in the process.

The new approach bypasses the tumor-cell extraction and culturing process of dendritic cell immunotherapy. Instead, dendritic cells derived from the patient's bone marrow are attached to a virus engineered to express interleukin-23 (IL-23), a recently discovered cytokine, a protein that regulates immune responses. The dendritic cells are then injected directly into an existing tumor.

IL-23 allows dendritic cells to recognize antigens, such as live glioma cells, that otherwise escape surveillance without immune therapy manipulation. It also has several other properties that significantly improve the immune system's effectiveness against gliomas, which are highly aggressive cancers.

"Interleukin-23 promotes the function of dendritic cells and memory T-cells, important components in providing an initial response and long-term immunity against tumor cells," said John S. Yu, M.D., neurosurgeon, co-director of the Comprehensive Brain Tumor Program at the Maxine Dunitz Neurosurgical Institute, and senior author of the Cancer Research article.

An article by Yu and his colleagues in the March 1, 2006 issue of the same journal documented IL-23's potential effectiveness against gliomas and its impact on memory cells, which enable the immune system to "remember" antigens and respond in subsequent encounters. In that animal study, the researchers injected bone marrow-derived neural stem cells that were genetically engineered to produce IL-23. The stem cells tracked tumor cells and the IL-23 produced an immune response and long-term protection.

In the newly published study, 80 percent of animals receiving intratumoral injection of dendritic cell-interleukin-23 (DC-IL-23) survived beyond the observation period of 120 days, a far higher percentage than animals in control groups. Furthermore, surviving animals continued to live even after rechallenge, the implantation of additional glioma cells, and remained tumor-free at the end of the study.

"Dendritic cells and interleukin-23 appear to work very well together against glioma cells. Intratumoral injections brought about robust infiltration of tumor-killing T-cells and established a strong systemic response specific to the tumor cells," Yu said.

"These findings build on our previous observations as we work to develop an effective strategy to activate an immune response against brain tumors, and we're looking forward to rapidly translating this approach into a clinical trial," said Keith L. Black, M.D., director of the Maxine Dunitz Neurosurgical Institute and interim chair of the medical center's Department of Neurosurgery.

This study was supported by grants from the National Institutes of Health. The Maxine Dunitz Neurosurgical Institute researchers worked with colleagues in Cedars-Sinai Medical Center's Department of Surgery and the University of Perugia, Italy.

Citation: Cancer Research, Sept. 1, 2006, "Induction of potent antitumor immunity by intratumoral injection of IL-23 transduced dendritic cells."

Community
Email This Article
Comment On This Article

Related Links
Cedars-Sinai Medical Center
Hospital and Medical News at InternDaily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Interview: Clearant's CEO on tissue safety
Washington DC (SPX) Sep 04, 2006
United Press International this week interviewed Clearant's CEO Alain Delongchamp about the company's technology for sterilizing human tissue implants, in light of the recent announcement from the Food and Drug Administration that it formed a task force to review the agency's regulations for ensuring such tissues are safe and free of disease.







  • Schwarzenegger Caps Greenhouse-Gas Emissions In California
  • Protesters Aim To Shut Down British Power Station
  • Crude Oil Rebounds On Iran Jitters
  • Turning Fuel Ethanol Into Beverage Alcohol

  • Understanding Reactor Security Fears In The 21st Century
  • Iran Hopes Russia Will Be Main Bidder In Two New NPP Projects
  • Iran Plans New Light Water Nuclear Reactor
  • Argentina Launches Multi-Billion-Dollar Nuclear Initiative

  • NASA Experiment Finds Possible Trigger For Radio-Busting Bubbles
  • California's Model Skies
  • ESA Picks SSTL To Develop Atmospheric CO2 Detector
  • Faster Atmospheric Warming In Subtropics Pushes Jet Streams Toward Poles

  • NASA Satellites Can See How Climate Change Affects Forests
  • Papua Logging Industry Riddled With Corruption, Rights Abuses: Report
  • Small-Scale Logging Leads To Clear-Cutting In Brazilian Amazon
  • Debate Continues On Post-Wildfire Logging, Forest Regeneration

  • French Police Arrest Three As Hundreds Try To Destroy GM Crops
  • Japanese Sushi Infatuation Straining Atlantic Tuna Stocks
  • EU Orders Imports Of US Rice To Be Certified Free Of GM Strain
  • Cow Gas Study Not Just A Lot Of Hot Air

  • Real-Time Traffic Routing From The Comfort Of Your Car
  • Real-Time Traffic Routing From The Comfort Of Your Car
  • British Police Force To Introduce Greener Cars
  • Two New Segway Models Offered

  • US Sanctions On Russia Could Hurt Boeing
  • Boeing Puts Aircraft Market At 2.6 Trillion Dollars
  • Innovative Solutions Make Transportation Systems Safer Secure and Efficient
  • Joint Strike Fighter Is Not Flawed Finds Australian Government

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement