Energy News
CHIP TECH
Chip-based system for terahertz waves could enable more efficient, sensitive electronics
illustration only
Chip-based system for terahertz waves could enable more efficient, sensitive electronics
by Adam Zewe | MIT News
Boston MA (SPX) Mar 06, 2025

The use of terahertz waves, which have shorter wavelengths and higher frequencies than radio waves, could enable faster data transmission, more precise medical imaging, and higher-resolution radar.

But effectively generating terahertz waves using a semiconductor chip, which is essential for incorporation into electronic devices, is notoriously difficult.

Many current techniques can't generate waves with enough radiating power for useful applications unless they utilize bulky and expensive silicon lenses. Higher radiating power allows terahertz signals to travel farther. Such lenses, which are often larger than the chip itself, make it hard to integrate the terahertz source into an electronic device.

To overcome these limitations, MIT researchers developed a terahertz amplifier-multiplier system that achieves higher radiating power than existing devices without the need for silicon lenses.

By affixing a thin, patterned sheet of material to the back of the chip and utilizing higher-power Intel transistors, the researchers produced a more efficient, yet scalable, chip-based terahertz wave generator.

This compact chip could be used to make terahertz arrays for applications like improved security scanners for detecting hidden objects or environmental monitors for pinpointing airborne pollutants.

"To take full advantage of a terahertz wave source, we need it to be scalable. A terahertz array might have hundreds of chips, and there is no place to put silicon lenses because the chips are combined with such high density. We need a different package, and here we've demonstrated a promising approach that can be used for scalable, low-cost terahertz arrays," says Jinchen Wang, a graduate student in the Department of Electrical Engineering and Computer Science (EECS) and lead author of a paper on the terahertz radiator.

He is joined on the paper by EECS graduate students Daniel Sheen and Xibi Chen; Steven F. Nagle, managing director of the T.J. Rodgers RLE Laboratory; and senior author Ruonan Han, an associate professor in EECS, who leads the Terahertz Integrated Electronics Group. The research will be presented at the IEEE International Solid-States Circuits Conference.

Making waves

Terahertz waves sit on the electromagnetic spectrum between radio waves and infrared light. Their higher frequencies enable them to carry more information per second than radio waves, while they can safely penetrate a wider range of materials than infrared light.

One way to generate terahertz waves is with a CMOS chip-based amplifier-multiplier chain that increases the frequency of radio waves until they reach the terahertz range. To achieve the best performance, waves go through the silicon chip and are eventually emitted out the back into the open air.

But a property known as the dielectric constant gets in the way of a smooth transmission.

The dielectric constant influences how electromagnetic waves interact with a material. It affects the amount of radiation that is absorbed, reflected, or transmitted. Because the dielectric constant of silicon is much higher than that of air, most terahertz waves are reflected at the silicon-air boundary rather than being cleanly transmitted out the back.

Since most signal strength is lost at this boundary, current approaches often use silicon lenses to boost the power of the remaining signal.

The MIT researchers approached this problem differently.

They drew on an electromechanical theory known as matching. With matching, they seek to equal out the dielectric constants of silicon and air, which will minimize the amount of signal that is reflected at the boundary.

They accomplish this by sticking a thin sheet of material which has a dielectric constant between silicon and air to the back of the chip. With this matching sheet in place, most waves will be transmitted out the back rather than being reflected.

A scalable approach

They chose a low-cost, commercially available substrate material with a dielectric constant very close to what they needed for matching. To improve performance, they used a laser cutter to punch tiny holes into the sheet until its dielectric constant was exactly right.

"Since the dielectric constant of air is 1, if you just cut some subwavelength holes in the sheet, it is equivalent to injecting some air, which lowers the overall dielectric constant of the matching sheet," Wang explains.

In addition, they designed their chip with special transistors developed by Intel that have a higher maximum frequency and breakdown voltage than traditional CMOS transistors.

"These two things taken together, the more powerful transistors and the dielectric sheet, plus a few other small innovations, enabled us to outperform several other devices," he says.

Their chip generated terahertz signals with a peak radiation power of 11.1 decibel-milliwatts, the best among state-of-the-art techniques. Moreover, since the low-cost chip can be fabricated at scale, it could be integrated into real-world electronic devices more readily.

One of the biggest challenges of developing a scalable chip was determining how to manage the power and temperature when generating terahertz waves.

"Because the frequency and the power are so high, many of the standard ways to design a CMOS chip are not applicable here," Wang says.

The researchers also needed to devise a technique for installing the matching sheet that could be scaled up in a manufacturing facility.

Moving forward, they want to demonstrate this scalability by fabricating a phased array of CMOS terahertz sources, enabling them to steer and focus a powerful terahertz beam with a low-cost, compact device.

This research is supported, in part, by NASA's Jet Propulsion Laboratory and Strategic University Research Partnerships Program, as well as the MIT Center for Integrated Circuits and Systems. The chip was fabricated through the Intel University Shuttle Program.

Related Links
Research Laboratory of Electronics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Light from engineered quantum structures
Berlin, Germany (SPX) Mar 06, 2025
Quantum physics often deals with entities so small that specialized microscopes are needed to observe them. However, researchers at the Institute for Atomic and Subatomic Physics at TU Wien are working with quantum structures large enough to be seen with the naked eye-albeit with some effort. These superconducting circuits, which can span hundreds of micrometers, function as artificial atoms with tunable properties, allowing precise control over quantum phenomena. Unlike natural atoms, which posse ... read more

CHIP TECH
South Africa, Indonesia say US withdrawing from climate finance deal

US ends waiver for Iraq to buy Iranian electricity

Trump's energy chief vows reversal of Biden climate policies

Indonesia plans $40 bn energy projects in 2025: minister

CHIP TECH
The quest for room-temperature superconductors

CATALYST Unveils INSIGHTS Vegetation Management to Strengthen Utility Grid Reliability

Developing materials for stellar performance in fusion power plants

Researchers are cracking the code on solid-state batteries

CHIP TECH
Berlin says offshore Chinese wind farm may pose security risk

Engineers' new design of offshore energy system clears key hurdle

Student refines 100-year-old math problem, expanding wind energy possibilities

Green energy projects adding to Sami people's climate woes: Amnesty

CHIP TECH
Solar technology can meet UK electricity demand without reducing farmland

Enhanced Thermal Resilience for Perovskite Solar Cells

Heat cycles shape perovskite cell durability

HKUST advances nanoscale research to enhance perovskite solar cell efficiency

CHIP TECH
Highly radioactive nuclear waste - preserving awareness for future generations

Spain under pressure to abort nuclear energy phase-out

Framatome advances nuclear fuel innovation as U.S. NRC reviews high burnup fuel report

Scientists craft breakthrough fuel for next-generation nuclear reactor

CHIP TECH
Eco friendly low-cost energy storage system from pine biomass

Why Expanding the Search for Climate-Friendly Microalgae is Essential

Solar-powered reactor extracts CO2 from air to produce sustainable fuel

Zero Emissions Process for Truly Biodegradable Plastics Developed

CHIP TECH
S.Sudan general, oil minister arrested in threat to peace deal

Leak at new gas field off Senegal, Mauritania

Nord Stream methane leak larger than initial estimates

Greenpeace, locals protest over gas leak off Senegal, Mauritania

CHIP TECH
Climate 'laggard' Ireland risks 26 bn euros EU fine: report

Nations fail to break deadlock on UN climate report timing

Hundreds of firings at key US climate agency: lawmaker

Europe's Greens have the blues as climate measures rolled back

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.