Energy News  
Cassini Sinks The Claws Into Saturn Rings And Finds The Lumps

This false-color image of Saturn's main rings was made by combining data from multiple star occultations using the Cassini ultraviolet imaging spectrograph. Image credit: NASA/JPL/University of Colorado
by Staff Writers
Pasadena CA (JPL) May 23, 2007
Saturn's largest and most densely packed ring is composed of dense clumps of particles separated by nearly empty gaps, according to new findings from NASA's Cassini spacecraft. These clumps in Saturn's B ring are neatly organized and constantly colliding, which surprised scientists. Previous interpretations assumed the ring particles were distributed uniformly and so scientists underestimated the total mass of Saturn's rings. The mass may actually be two or more times previous estimates.

"These results will help us understand the overall question of the age and hence the origin of Saturn's rings," said Josh Colwell, assistant professor of physics at the University of Central Florida and a member of the Cassini ultraviolet imaging spectrograph team publishing its results in the journal Icarus this month.

Principal investigator Larry Esposito at the University of Colorado, Boulder is fascinated with the findings.

"The rings are different from the picture we had in our minds," Esposito said. "We originally thought we would see a uniform cloud of particles. Instead we find that the particles are clumped together with empty spaces in between. If you were flying under Saturn's rings in an airplane, you would see these flashes of sunlight come through the gaps, followed by dark and so forth. This is different from flying under a uniform cloud of particles."

The observations were made using the spectrograph aboard the Cassini spacecraft, which left earth in 1997 on a mission to collect detailed data about Saturn, its rings and moons. Cassini -- the largest interplanetary spacecraft launched from earth -- entered Saturn's orbit in July 2004, and scientists have been using sophisticated equipment on board to view and analyze images.

Boulder and UCF scientists observed the brightness of a star as the rings passed in front of the star on multiple occasions. This provides a measurement of the amount of ring material between the spacecraft and the star.

"Combining many of these occultations at different viewing geometries is like doing a CAT scan of the rings," said Colwell. "By studying the brightness of stars as the rings pass in front of them, we are able to map the ring structure in 3-D and learn more about the shape, spacing and orientation of clusters of particles."

The observations confirm that the gravitational attraction of ring particles to each other creates clumps, or "self-gravity wakes." If the clumps were farther from Saturn, they might continue to grow into a moon. But because these clumps are so close to Saturn, their different speeds around Saturn counteract this gravitational attraction so that the clumps get stretched like taffy and pulled apart. The clumps are constantly forming and coming apart once they get to be about 30 to 50 meters (about 100 to 150 feet) across.

"At any given time, most particles are going to be in one of the clumps, but the particles keep moving from clump to clump as clumps are destroyed and new ones are formed," added Colwell.

Colwell is a professor in UCF's growing program in planetary sciences. He joined the faculty because of the "opportunity to be involved in growing a new planetary sciences program."

He is a DeLand native and earned his bachelor's degree at Stetson University before doing advanced study at the University of Colorado, where he met Esposito. Colwell's area of expertise is planetary dynamics and his research focus is determining the origins of the solar system.

Email This Article

Related Links
Cassini at JPL
Cassini images
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Frictional Heating Explains Plumes On Enceladus
Pasadena CA (SPX) May 17, 2007
Rubbing your hands together on a cold day generates a bit of heat, and the same process of frictional heating may be what powers the geysers jetting out from the surface of Saturn's moon Enceladus. Tidal forces acting on fault lines in the moon's icy shell cause the sides of the faults to rub back and forth against each other, producing enough heat to transform some of the ice into plumes of water vapor and ice crystals, according to a new study published in the May 17 issue of the journal Nature.







  • EcoLEDs Announces Brightest Commercial LED Light Bulb Yet
  • New Process Generates Hydrogen from Aluminum Alloy To Run Engines And Fuel Cells
  • Burns Postpones India Visit Indefinitely As Nuke Deal Heads South
  • Novel Sugar-To-Hydrogen Technology Promises Transportation Fuel Independence

  • Revamped, Renewed, Restarted: High Flux Isotope Reactor Back On Line
  • China Sets Up Government Nuclear Power Technology Corporation
  • Blair Argues For Nuclear Power As Government Publishes Proposals
  • Iran Building First Indigenous Nuclear Plant

  • Widespread Twilight Zone Detected Around Clouds
  • Rand Says Further Study Warranted On Save The World Air Technology
  • Noxious Lightning
  • AIM Heads For Orbit

  • Indonesia's Crackdown On Illegal Logging Under Fire
  • Brazil Demonstrating That Reducing Tropical Deforestation Is Key WinWin Global Warming Solution
  • Global Scientists Urge Canada To Save Boreal Forest
  • "Reducing Emissions From Deforestation" Initiative Launched

  • Climate Change Threatens Wild Relatives Of Key Crops
  • Journal Details How Global Warming Will Affect The World's Fisheries
  • Spud Origin Controversy Solved
  • Decimation Of Bee Colonies Has Various Possible Causes

  • Toyota Launches New Luxury Hybrid
  • The Driving Force Behind Electric Vehicles
  • Radical Engine Redesign Would Reduce Pollution And Oil Consumption
  • Intelligent Cars As Fuel-Efficient As Hybrids

  • Australia Fears Jet Flight Guilt Could Hit Tourism
  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement