Energy News  
Carbon World's Could Sparkle Like Diamonds

HD 28185 b was the first exoplanet discovered with a circular orbit within its star's habitable zone. Credit: STScI Digitized Sky Survey.

Moffett Field CA (SPX) Feb 09, 2005
Some extrasolar planets may be made substantially from carbon compounds, including diamond, according to a report presented this week at the conference on extrasolar planets in Aspen, Colorado.

Earth, Mars and Venus are "silicate planets" consisting mostly of silicon-oxygen compounds. Astrophysicists are proposing that some stars in our galaxy may host "carbon planets" instead.

"Carbon planets could form in much the same way as do certain meteorites in our solar system, the carbonaceous chondrites," said Dr. Marc J. Kuchner of Princeton University, making the report in Aspen together with Dr. Sara Seager of the Carnegie Institute of Washington.

"These meteorites contain large quantities of carbon compounds such as carbides, organics, and graphite, and even the occasional tiny diamond." Imagine such a meteorite the size of a planet, and you are picturing a carbon planet.

Planets like the Earth are thought to condense from disks of gas orbiting young stars. In gas with extra carbon or too little oxygen, carbon compounds like carbides and graphite condense out instead of silicates, possibly explaining the origin of carbonaceous chondrites and suggesting the possibility of carbon planets.

Any condensed graphite would change into diamond under the high pressures inside the carbon planets, potentially forming diamond layers inside the planets many miles thick

Some of the already known low- and intermediate-mass extrasolar planets may be carbon planets, which should easily survive at high temperatures near a star if they have the mass of Neptune. Carbon planets would probably consist mostly of carbides, thought they may have iron cores and substanial atmospheres. Carbides are a kind of ceramic used to line the cylinders of motorcycle engines among other things.

The planets orbiting the pulsar PSR 1257+12 are good candidates for carbon planets; they may have formed from the disruption of a star that produced carbon as it aged. So are planets located near the center of the Galaxy, where stars are more carbon-rich than the sun, on average. Slowly, the galaxy as a whole is becoming more carbon-rich; in the future, all planets formed may be carbon planets.

"There's no reason to think that extrasolar planets will be just like the planets in the solar system." says Kuchner. "The possibilities are startling."

Kuchner added, "NASA's future Terrestrial Planet Finder (TPF) mission may be able to spot these planets." The spectra of these planets should lack water, and instead reveal carbon monoxide, methane, and possibly long-chain carbon compounds synthesized photochemically in their atmospheres. The surfaces of carbon planets may be covered with a layer of long-chain carbon compounds - in other words, something like crude oil or tar.

The first TPF telescope, an optical telescope several times the size of the Hubble Space Telescope is scheduled to launch in 2015. The TPF missions are designed to search for planets like the Earth and determine whether they might be suitable for life.

Community
Email This Article
Comment On This Article

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Latching Onto Lichen
Moffett Field CA (SPX) Dec 06, 2005
Bacteria can often survive the harsh conditions of space, and their toughness and adaptability have made them key candidates for the transfer of life between planets. But in a recent study by European scientists, lichen survived a trip in space even better than bacteria do.







  • Tiny Superconductors Withstand Stronger Magnetic Fields
  • UPI Energy Watch
  • UPI Energy Watch
  • NETL And Carnegie Mellon Create New Paradigms For Hydrogen Production

  • Iran Says Ready To Sign Key Deal With Russian On Nuclear Plant
  • Tsunami Makes India's Nuke Workers Jittery
  • Japan Begins Controversial Uranium Test To Recycle Nuclear Fuel
  • Iran Makes Uranium Powder But Not Violating Nuclear Freeze - Diplomats





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Political Fur Flies Over Marine One Deal
  • Military Sales Lift Lockheed Martin Profit To $372 Million
  • Asia Aviation To Defy Global Trend In 05
  • India Ruins Pakistan's F-16 Shopping Spree

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement