![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Chestnut Hill MA - Jun 21, 2004 A Boston College scientist has published new research introducing the concept of a CO2 fertilization factor for soil carbon, a way to measure an ecosystem's ability to store carbon in response to increased carbon dioxide in the atmosphere. The study, authored by Kevin G. Harrison, an assistant professor in Boston College's Geology and Geophysics Department, has serious implications for scientists examining global climate change who have long sought information on missing carbon sinks. His research appears in the May 2004 Geochemistry, Geophysics, Geosystems (G3), an electronic journal published by the American Geophysical Union, which showcases discoveries in geophysics and geochemistry that cross traditional disciplinary boundaries and approach the Earth as a system. Harrison's research says that CO2 fertilization may be slowing down the expected accumulation of carbon dioxide in the atmosphere by increasing carbon accumulation in terrestrial vegetation and soil. "I have determined a CO2 fertilization factor of 1.18 for a white oak ecosystem using soil carbon and radiocarbon measurements. If major terrestrial ecosystems have similar values, CO2 fertilization may be transferring enough carbon from the atmosphere to the soil to balance the global carbon budget," according to Harrison. "It is my hope that these concepts will be used by global change geochemists worldwide," writes Harrison. Samples for the study were collected from a white oak experiment at the Global Change Field Research Site in Oak Ridge, Tenn. The research has been funded by the U.S. Department of Agriculture. Harrison's research focuses on the effects of fossil fuel combustion, dust and deforestation on the buildup of carbon dioxide in the atmosphere. At Boston College, he teaches courses on "Biogeochemistry of the Habitable Planet"; "Environmental Geochemistry: Living Dangerously," and "Global Warming." He earned a bachelor of science degree in chemistry at Brown University. He received a master's degree in marine chemistry from the University of California at San Diego's Scripps Institution of Oceanography, and master's and doctoral degrees in geological sciences from Columbia University. Community Email This Article Comment On This Article Related Links Boston College SpaceDaily Search SpaceDaily Subscribe To SpaceDaily Express Earth Observation News - Suppiliers, Technology and Application
![]() ![]() The importance of remotely sensed data and technologies to support natural disasters has prompted attention and action in Washington. New initiatives and legislation authorizing appropriations to the remote sensing industry will be discussed at Strategic Research Institute's U.S. Commercial Remote Sensing Industry conference, scheduled for February 9-10, 2006 in Washington D.C. |
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |