![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]()
Boulder - January 19, 2000 - Scientists at Southwest Research Institute (SwRI), in collaboration with the NASA Dryden Flight Research Center in California, have successfully completed a proof-of-concept program that places astronomers in the backseats of high- performance jet aircraft. Caption: SWUIS Principal Investigator Alan Stern (rear cockpit) and NASA pilot Gordon Fullerton conducting the intial flight test of the SWUIS-A imaging system in a NASA F-18. The program recently culminated with SwRI scientists using the Institute- developed Southwest Ultraviolet Imaging System-Airborne (SWUIS-A) imager aboard a NASA F-18 to observe an asteroid occulting a star. "This observation will reveal the size of the asteroid 308 Polyxo, which, like most asteroids, is too small for even the Hubble Space Telescope to resolve," says Principal Investigator Dr. S. Alan Stern, director of the SwRI Department of Space Studies in Boulder. Dr. Daniel D. Durda, the SWUIS flight astronomer for the asteroid occultation mission, adds, "Our observation with SWUIS-A, obtained from above the clouds that obscured the sky over Dryden during the event, will be combined with three ground-based observations from other locations to deduce the asteroid's shape." For decades, airborne astronomy and geophysical observations have proven useful adjuncts to ground-based and space-based instrumentation, particularly for optical and infrared studies. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission and the mobility to reach remote or otherwise unreachable locations, such as over oceans. Airborne platforms also virtually guarantee good weather for observing the sky, and are far less expensive to operate than spacecraft. A key advantage of small, high-performance platforms like F-18s over larger, more conventional airborne platforms is the cost savings they generate. For example, an F-18 is about 10 times less expensive to operate per hour than the KC-135/Boeing 707s and Boeing 747s typically used. Other advantages include worldwide basing and faster reaction times to transient astronomical events.
Although these small aircraft cannot carry as large a payload or as sophisticated telescopes as larger airborne observatories, the SwRI/NASA demonstration program enabled astronomers to fly along with their instruments, providing a space shuttle-like "payload specialist" capability. Flight training for the astronomers was funded largely through the SwRI internal research program. To date, 14 SwRI/NASA airborne astronomy missions have been flown using the sensitive, but rugged, SWUIS-A imager. These missions included high-altitude flights in NASA WB-57s to observe comet Hale-Bopp and in NASA F-18s to perfect techniques for observing asteroid and planetary occultations over oceans. Future SWUIS-A missions aboard high-altitude aircraft, such as two-seater U-2s flying at up to 75,000 feet, will capitalize on the ability of the instrument to look near (and soon, even at) the sun to search for Vulcanoids -- an assumed population of small asteroids circling the sun inside Mercury's orbit -- and to observe breakup mechanics in sun-grazing comets. SWUIS-A may also be used to detect and track space debris that might pose a hazard to satellites, the space shuttle, and the International Space Station. The application of SWUIS-A to study a variety of terrestrial aeronomical phenomena, including lightning and sprites, aurora, and ozone studies, and future studies of meteoroid showers, missile tests, and other phenomena of interest is also envisioned.
Email This Article Comment On This Article Related Links Space
![]() ![]() The successful launch Thursday of India's heaviest satellite from spaceport of Kourou in French Guyana may have boosted the country's space research efforts to yet another level, but it has also lifted the spirits of at least three Direct-To-Home televisions broadcasters, one of which has been waiting for years to launch its services in India. |
![]() |
|
|
|
|
|
|
|
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |