Energy News  
Astronomers Discover Beginnings Of 'Mini' Solar System

This artist's concept shows a brown dwarf surrounded by a swirling disc of planet-building dust. NASA's Spitzer Space Telescope spotted such a disc around a surprisingly low-mass brown dwarf, or "failed star." Astronomers believe that this unusual system will eventually spawn planets. If so, they speculate that OTS 44's disc has enough mass to make one small gas giant and a few Earth-sized rocky planets. Credit: NASA.

Cambridge MA (SPX) Feb 08, 2005
Moons circle planets, and planets circle stars. Now, astronomers have learned that planets may also circle celestial bodies almost as small as planets.

NASA's Spitzer Space Telescope has spotted a dusty disc of planet-building material around an extraordinarily low-mass brown dwarf, or "failed star."

The brown dwarf, called OTS 44, is only 15 times the mass of Jupiter. Previously, the smallest brown dwarf known to host a planet-forming disc was 25 to 30 times more massive than Jupiter.

The finding will ultimately help astronomers better understand how and where planets � including rocky ones resembling our own � form.

"There may be a host of miniature solar systems out there, in which planets orbit brown dwarfs," said Dr. Kevin Luhman, lead author of the new study from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. "This leads to all sorts of new questions, like 'Could life exist on such planets?' or 'What do you call a planet circling a planet-sized body? A moon or a planet? '"

Brown dwarfs are something of misfits in the astronomy world. These cool orbs of gas have been called both failed stars and super planets. Like planets, they lack the mass to ignite and produce starlight. Like stars, they are often found alone in space, with no parent body to orbit.

"In this case, we are seeing the ingredients for planets around a brown dwarf near the dividing line between planets and stars. This raises the tantalizing possibility of planet formation around objects that themselves have planetary masses," said Dr. Giovanni Fazio, an astronomer at the Harvard Smithsonian Center for Astrophysics and a co-author of the new study.

The results were presented today at the Planet Formation and Detection meeting at the Aspen Center for Physics, Aspen, Colo., and will be published in the Feb. 10th issue of The Astrophysical Journal Letters.

Planet-forming, or protoplanetary, discs are the precursors to planets. Astronomers speculate that the disc circling OTS 44 has enough mass to make a small gas giant planet and a few Earth-sized, rocky ones. This begs the question: Could a habitable planet like Earth sustain life around a brown dwarf?

"If life did exist in this system, it would have to constantly adjust to the dwindling temperatures of a brown dwarf," said Luhman. "For liquid water to be present, the planet would have to be much closer to the brown dwarf than Earth is to our Sun."

"It's exciting to speculate about the possibilities for life in such as system, of course at this point we are only beginning to understand the unusual circumstances under which planets arise," he added.

Brown dwarfs are rare and difficult to study due to their dim light. Though astronomers recently reported what may be the first-ever image of a planet around a brown dwarf called 2M1207, not much is understood about the planet-formation process around these odd balls of gas. Less is understood about low-mass brown dwarfs, of which only a handful are known.

OTS 44 was first discovered about six months ago by Luhman and his colleagues using the Gemini Observatory in Chile.

The object is located 500 light-years away in the Chamaeleon constellation. Later, the team used Spitzer's highly sensitive infrared eyes to see the dim glow of OTS 44's dusty disc. These observations took only 20 seconds. Longer searches with Spitzer could reveal discs around brown dwarfs below10 Jupiter masses.

Other authors of this study include Dr. Paola D'Alessia of the Universidad Nacional Autonoma de Mexico; and Drs. Nuria Calvet, Lori Allen, Lee Hartmann, Thomas Megeath and Philip Myers of the Harvard-Smithsonian Center for Astrophysics.

Community
Email This Article
Comment On This Article

Related Links
Spitzer at Caltech
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Latching Onto Lichen
Moffett Field CA (SPX) Dec 06, 2005
Bacteria can often survive the harsh conditions of space, and their toughness and adaptability have made them key candidates for the transfer of life between planets. But in a recent study by European scientists, lichen survived a trip in space even better than bacteria do.







  • Tiny Superconductors Withstand Stronger Magnetic Fields
  • UPI Energy Watch
  • UPI Energy Watch
  • NETL And Carnegie Mellon Create New Paradigms For Hydrogen Production

  • Iran Says Ready To Sign Key Deal With Russian On Nuclear Plant
  • Tsunami Makes India's Nuke Workers Jittery
  • Japan Begins Controversial Uranium Test To Recycle Nuclear Fuel
  • Iran Makes Uranium Powder But Not Violating Nuclear Freeze - Diplomats





  • NASA Uses Remotely Piloted Airplane To Monitor Grapes



  • Political Fur Flies Over Marine One Deal
  • Military Sales Lift Lockheed Martin Profit To $372 Million
  • Asia Aviation To Defy Global Trend In 05
  • India Ruins Pakistan's F-16 Shopping Spree

  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program
  • Boeing-Led Team to Study Nuclear-Powered Space Systems

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement