An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes by Staff Writers New Brunswick NJ (SPX) Dec 14, 2018
What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your electric bill and carbon footprint? Engineers at Rutgers and Oregon State University have found a cost-effective way to make thin, durable heating patches by using intense pulses of light to fuse tiny silver wires with polyester. Their heating performance is nearly 70 percent higher than similar patches created by other researchers, according to a Rutgers-led study in Scientific Reports. They are inexpensive, can be powered by coin batteries and are able to generate heat where the human body needs it since they can be sewed on as patches. "This is important in the built environment, where we waste lots of energy by heating buildings - instead of selectively heating the human body," said senior author Rajiv Malhotra, an assistant professor in the Department of Mechanical and Aerospace Engineering at Rutgers University-New Brunswick. The department is in the School of Engineering. It is estimated that 47 percent of global energy is used for indoor heating, and 42 percent of that energy is wasted to heat empty space and objects instead of people, the study notes. Solving the global energy crisis - a major contributor to global warming - would require a sharp reduction in energy for indoor heating. Personal thermal management, which focuses on heating the human body as needed, is an emerging potential solution. Such patches may also someday help warm anyone who works or plays outdoors. The Rutgers and Oregon State engineers created highly efficient, flexible, durable and inexpensive heating patches by using "intense pulsed-light sintering" to fuse silver nanowires - thousands of times thinner than a human hair - to polyester fibers, using pulses of high-energy light. The process takes 300 millionths of a second, according to the study funded by the National Science Foundation and Walmart U.S. Manufacturing Innovation Fund. When compared with the current state of the art in thermal patches, the Rutgers and Oregon State creation generates more heat per patch area and is more durable after bending, washing and exposure to humidity and high temperature. Next steps include seeing if this method can be used to create other smart fabrics, including patch-based sensors and circuits. The engineers also want to determine how many patches would be needed and where they should be placed on people to keep them comfortable while reducing indoor energy consumption.
Scientists enter unexplored territory in superconductivity search Upton NY (SPX) Dec 07, 2018 Scientists mapping out the quantum characteristics of superconductors - materials that conduct electricity with no energy loss - have entered a new regime. Using newly connected tools named OASIS at the U.S. Department of Energy's Brookhaven National Laboratory, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors. The newly mapped data includes signals of what happens when superconductivity vanishes. "In te ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |