Energy News  
AEROSPACE
An eagle's gliding ability relies on its wrist movements
by Brooks Hays
Washington DC (UPI) Oct 24, 2019

An eagle's impressive ability to glide effortlessly through the air, riding thermals in big, graceful circles, is made possible by the bird's unique wrist motions, according to a new study.

Birds display similar flight patterns despite disparate morphologies. Many birds of different shapes and sizes can adeptly hover, for example, including hummingbirds, falcons, hawks, kingfishers and passerines.

Likewise, ravens can glide in a manner similar to eagles. Their close relative, the crow, uses a more pedestrian flying style, remaining close the ground.

Until now, scientists remained puzzled by the ability of unrelated birds to achieve similar flight patterns. It turns out, birds augment their flying style, not by adapting the size and shape of their wing, but by adjusting their range of motion.

"Birds essentially swim through the air -- they flex, extend and bend their wings in flight," Vikram Baliga, a researcher at the University of British Columbia, said in a news release. "As a bird specializes in a flight style, nature doesn't appear to reshape the size or shape of the wing as much as it remodels the wing's range of motion. Much like a swimmer adjusting their stroke."

When Baliga and his colleagues analyzed the anatomical structures and movements of hovering birds, they found all of them struggled to extend their elbows. The hovering species did, however, boast an impressive range of motion with their wrists.

"Hummingbirds basically tuck their elbows in and predominately rely on rapidly swinging their wings at the wrist joint," said Baliga. "For birds that glide, it's more about maintaining the position of the limbs to keep steady sail. The most restricted species in our study are the bald eagle and the sooty shearwater, both of which frequently soar and glide."

Baliga and his research partners detailed their analysis of the relationship between bird flight and range of motion in a paper published this week in the journal Science Advances.

For the study, researchers characterized the flying patterns of 61 different species, including the bald eagle, Haliaeetus leucocepalus, and sooty shearwater, Ardenna grisea. For each species, scientists also studied the shape, flexibility and extendibility of their wings. Finally, scientists plotted the data on an evolutionary tree to better understand how wing motion and flying styles evolve.

According to the study's authors, the ways different bird wings move during flight could inform how engineers design blades and airfoils used by drones and airplanes.

"We're working towards understanding how wings in nature morph during flight so that the knowledge can be applied to unmanned aerial vehicles -- particularly in turbulence, wind gusts, or when attacked by aerial predators," Baliga said. "Evolution has tested a range of wing designs and motions for specific circumstances. Looking at the restrictions that nature places on birds of different sizes and flight styles can help us understand what does and does not work when designing new technology."


Related Links
Aerospace News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


AEROSPACE
Composite metal foam outperforms aluminum for use in aircraft wings
Raleigh NC (SPX) Oct 23, 2019
The leading edges of aircraft wings have to meet a very demanding set of characteristics. New research shows that a combination of steel composite metal foam (CMF) and epoxy resin has more desirable characteristics for use as a leading-edge material than the aluminum currently in widespread use. "We call our hybrid material 'infused CMF,'" says Afsaneh Rabiei, corresponding author of a paper on the work and a professor of mechanical and aerospace engineering at NC State. "And while infused CMF is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
S.Africa to increase coal-fired energy, sparking climate outcry

To save climate, tax carbon at $75 per ton: IMF

How to Harmonise Wildlife and Energy Manufacturing

Canada, if Trudeau wins, to hit net zero emissions by 2050: minister

AEROSPACE
New plasma wave accelerator propels electrons to record speeds

Energy flow in the nano range

Imaging method promises industrial insight into fuel cells

Machine learning finds new metamaterial designs for energy harvesting

AEROSPACE
Wind turbine design and placement can mitigate negative effect on birds

Computer models show clear advantages in new types of wind turbines

Model helps choose wind farm locations, predicts output

Norway's Equinor, British SSE chosen for world's biggest offshore wind farm

AEROSPACE
Photon Energy replaces diesel with hybrid solar and storage system on Lord Howe Island

Sames Automotive becomes first dealership in Laredo to go solar with installation by Freedom Solar Power

Photon Energy commissions eight PV power plants with 5.6 MWp in Hungary

Acciona acquires 3,000-MW solar PV development portfolio from Tenaska

AEROSPACE
A new stable form of plutonium discovered at the ESRF

Two in tight race to lead UN nuclear watchdog

Putin says UAE may count on Russia's assistance in development of nuclear power

Framatome installs new instrumentation and control system at Exelon's Calvert Cliffs plant

AEROSPACE
Pearson Fuels partners with World Energy to deliver an advanced E85 Flex Fuel

Biofuels could be made from bacteria that grow in seawater rather than from crude oil

Flexible biofuel cell that runs on sweat

Total loses bid for palm oil tax break

AEROSPACE
ExxonMobil trial likely to star Rex Tillerson begins

Japanese defence forces plan MidEast mission: Kyodo

NGOs file suit against Total over Uganda oil project

Pentagon chief meets Saudi king after troop deployment

AEROSPACE
Transform land use to hit 1.5C target: experts

Dozens of elephants die in Zimbabwe drought

Climate activists vow change of tack after London Tube mayhem

Using space systems for climate control









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.