Subscribe free to our newsletters via your
. Energy News .




NANO TECH
Alzheimer-substance may be the nanomaterial of tomorrow
by Staff Writers
Goteborg, Sweden (SPX) Dec 19, 2013


Piotr Hanczyc created artificial amyloids in the laboratory. Image courtesy Mats Tiborn.

It causes brain diseases like Alzheimer's, Parkinson's and Creutzfeldt-Jakob's disease. It is also hard and rigid as steel. Now research at Chalmers University of Technology shows that the amyloid protein carries unique characteristics that may lead to the development of new composite materials for nano processors and data storage of tomorrow and even make objects invisible.

Piotr Hanczyc, PhD student at the department of Chemical and Biological Engineering, shows in an article in Nature Photonics, that the amyloid, a very dense aggregate of protein that causes brain diseases like Alzheimer's and Parkinson's, carries unique characteristics. Unlike well-functioning protein the amyloid reacts upon multi photon laser irradiation. This laser may in the future possibly be used for detection of amyloids inside a human brain. This discovery is in itself a breakthrough.

But you can also create these aggregates in an artificial way in a laboratory and in combination with other materials create unique characteristics, Piotr Hanczyc says.

The amyloid aggregates are as hard and rigid as steel. The difference is that steel is much heavier and has defined material properties whereas amyloids can be tuned for desired purpose. By attaching a material's molecules to the dense amyloid its characteristics change. This has been known for more than ten years and is already used by scientists.

What hasn't been known is that the amyloids react to multi-photon irradiation and this opens up new possibilities to also change the nature of the material attached to the amyloids, Piotr Hanczyc says.

The amyloids are shaped like discs densely piled upon each other. When a material gets merged with these discs its molecules end up so densely and regularly that they can communicate and exchange information. This means totally new possibilities to change a material's characteristics.

Multi-photon tests on materials tied to amyloids are yet to be performed, but Piotr sees an opportunity for cooperation with Chalmers material science researchers interested for example in solar cell technology.

And though it may still be science fiction, he also considers that one day scientists may use the material properties of amyloid fibrils in the research of invisible metamaterials.

An object's ability to reflect light could be altered so that what's behind it gets reflected instead of the object itself, in principle changing the index of light refraction, kind of like when light hits the surface of water, Piotr Hanczyc says.

.


Related Links
Chalmers University of Technology
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Nanoscale friction: High energy losses in the vicinity of charge density waves
Basel, Switzerland (SPX) Dec 20, 2013
In collaboration with the University of Basel, an international team of researchers has observed a strong energy loss caused by frictional effects in the vicinity of charge density waves. This may have practical significance in the control of nanoscale friction. The results have been published in the scientific journal Nature Materials. Friction is often seen as an adverse phenomenon that ... read more


NANO TECH
EU probes Germany energy price breaks for business

Ukraine's Two New Energy Deals

Keeping the lights on

Global energy demand to increase 35 percent: ExxonMobil

NANO TECH
Libya oil deadlock causes jitters in global energy market

BP engineer guilty of obstructing oil spill investigation

British PM urges EU to cut shale gas red tape

China natural gas represents 'golden opportunities'

NANO TECH
Austria's wind industry laments new zoning restrictions

Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

NANO TECH
DuPont Solar Materials Meet Sharp Corporation's Stringent Quality Standards

Microgrid Solar and Doe Run To Provide Solar Upgrades at Herculaneum High

Hanwha SolarOne Brings Light to Chinese Children in Need

Australia to reduce renewable energy target?

NANO TECH
Brussels opens probe into UK state aid for new nuclear plant

TEPCO to decommission surviving Fukushima reactors

Ratepayers Could Save $1.7 Billion If Aging Nuclear Plant At Hanford, Washington Is Closed

US Risks Losing Critical Clean Electricity if Nuclear Power Plants Keep Closing at Steady Pace

NANO TECH
Seaweed Energy Solutions (SES) acquires wild seaweed operation in Norway

Algae to crude oil: Million-year natural process takes minutes in the lab

Biorefinery could put South Australian forest industry back on growth track

Ground broken on $6 million Hungarian farm biogas plant

NANO TECH
Deep space monitoring station abroad imperative

Chinese sci-fi writers laud moon landing

China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

NANO TECH
World experiences hottest November in 134 years: US

Geoengineering approaches to reduce climate change unlikely to succeed

New long-lived greenhouse gas discovered by University of Toronto chemistry team

French carbon crook on run after bracelet fails




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement