Energy News  
STELLAR CHEMISTRY
All-sky survey maps neutral hydrogen across Milky Way
by Staff Writers
Bonn, Germany (SPX) Oct 28, 2016


Two of the largest radio telescopes in the world, utilized for HI4PI, the high-resolution map of the full sky in the light of neutral hydrogen. Effelsberg 100-m radio telescope near Bonn, Germany (left) and Parkes 64-m radio telescope 400 km west of Sydney/Australia (right). Image courtesy Norbert Junkes (left image), Shaun Amy (right image).

Two of the world's largest fully steerable radio telescopes, the 100-m dish at Effelsberg/Germany and the 64-m Parkes/Australia telescope, mapped the detailed structure of neutral hydrogen across the Northern and Southern hemispheres. Today, the complete survey, HI4PI, is released to the scientific community. It discloses a wealth of fine details of the large scale structure of the Milky Way's gas distribution. HI4PI is the product of a joined effort of astronomers of many countries and will be a milestone for the decades to come. The results are published in the current issue of "Astronomy and Astrophysics."

Atomic hydrogen is the most abundant element in space. It is the prime constituent in almost all astronomical objects such as stars, galaxies, and even clusters of galaxies. Hydrogen consists of a single proton and is the simplest element in space. It was already formed during the big bang nucleosynthesis. If the proton is combined with an electron, it is called neutral atomic hydrogen, abbreviated as HI.

In addition to the well-known hydrogen spectral lines at visual wavelengths, extremely faint hydrogen line emission can be observed at radio wavelengths, the so-called 21-cm line. Even though the emitted energy is tiny, the sheer amount of hydrogen in space makes the 21-cm line emission observable in nearly all galactic environments, even far beyond the stellar population of galaxies.

In 1951 three independent research groups from the United States, the Netherlands and Australia announced the first detection of HI 21-cm line emission. Now, 65 years later, an international collaboration of scientists from all over the world announced the release of a new full-sky 21-cm spectral line survey, called HI4PI. HI4PI is an acronym for HI across the whole sky (the surface area of the full sphere corresponding to 4*PI steradian).

The HI4PI collaboration, led by a German team from Bonn University and Max Planck Institute for Radio Astronomy (MPIfR), is publishing the results in the current issue of "Astronomy and Astrophysics."

With modern radio telescopes, HI is fairly easy to detect towards any direction on the sky. Mapping the whole sky is nevertheless time consuming and costly in terms of manual labor.

To map the whole sky demanded more than a million individual observations with two of the World's largest radio telescopes, the 100-m telescope at Effelsberg, Germany, and the Parkes 64-m telescope in Australia. In total, dozens of terabytes of raw data have been recorded. The raw data sets were processed by Astronomers in Bonn, yielding the final data product.

"Besides a careful calibration of the data, we also had to remove man-made noise from the data. This so-called radio frequency interference (RFI) is, for example, produced by telecommunication and broadcast stations, or military RADAR and pollutes the faint emission of the astronomical sources," explains Benjamin Winkel from MPIfR, responsible for the data acquisition and processing in the HI4PI collaboration.

"The computational effort for the data processing was huge, adding to the thousands of hours of observations thousands of hours of computing time."

The new observations were only possible because the technical equipment at radio telescopes was hugely improved in the last decade. On the one hand, new receiving systems utilizing multi-pixel feeds increased the mapping speed by an order of magnitude. On the other hand, extremely capable spectrometers based on state-of-the-art digital processors became available.

Previously, state-of-the-art HI data came from the Leiden-Argentine-Bonn survey (LAB), which is based on observations with 30-m class telescopes. The new HI4PI survey has twice the sensitivity and four times better angular resolution compared to the LAB survey.

Because HI is ubiquitous in the universe, HI4PI will serve as a major resource for researchers working with observational data at all wavelengths. As an example, X-ray and Gamma ray photons are partly absorbed, scattered or re-emitted at other wavelengths by Milky Way hydrogen during their journey from outer space to our telescopes.

Therefore, the distribution of HI in the Milky Way significantly alters the incoming signal observed by high-energy telescopes. The HI4PI data set allows the scientists to correct for these disturbing effects, cleaning our window to the distant universe.

Also, for astrophysicists studying the Milky Way gas distribution itself, HI4PI will be a valuable new resource. Owing to the increased sensitivity and angular resolution much finer structures of the interstellar medium are now revealed.

"Many studies that use pre-release data of the HI4PI survey have already been published in the last years, providing a wealth of new insights and amazing scientific results," says Peter Kalberla from Bonn University, the leading senior scientist in the project.

"HI4PI sets a benchmark for the decades to come," concludes Jurgen Kerp, also from Bonn University, the project coordinator and principal investigator of the Effelsberg survey.

"Although upcoming new instruments such as the Square Kilometre Array (SKA) will push sensitivity and angular resolution to new realms, being radio interferometers they are by design insensitive to diffusely distributed HI gas. The HI4PI will be the prime resource to add this missing information to the SKA data."

HI4PI data will be freely accessible on request from interested persons all over the world via CDS, the Strasbourg data center.

"HI4PI: A Full-Sky HI Survey Based on EBHIS and GASS," HI4PI Collaboration, 2016, Astronomy and Astrophysics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Max Planck Institute For Radio Astronomy
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Cluster's Advanced Age in Razor-Sharp Focus
Hilo, HI (SPX) Oct 28, 2016
Researchers using advanced adaptive optics technology at the Gemini South telescope in Chile probed the depths of the highly compact globular cluster NGC 6624, revealing pinpoint images of thousands of stars. The sharpness of the near-infrared images is competitive with that obtained from space with the Hubble Space Telescope in optical light. "With images this sharp, astronomers can do th ... read more


STELLAR CHEMISTRY
Australian consortium buys power grid after Chinese bid blocked

UNESCO urges Bangladesh to scrap Sundarbans plant

NREL releases new cost and performance data for electricity generation

Strong at the coast, weak in the cities - the German energy-transition patchwork

STELLAR CHEMISTRY
Fixing deficits in boundary plasma models

First results of NSTX-U research operations

Breakthrough in Z-pinch implosion stability opens new path to fusion

A turbulent solution to a growing problem

STELLAR CHEMISTRY
Cuomo announces major progress in offshore wind development

OX2 signs 148 MW wind power deal with Aquila Capital and Google

Prysmian Secures Contract for Offshore Wind Farm Inter-Array Submarine Cables Supply in Belgium

Wind turbines killing more than just local birds

STELLAR CHEMISTRY
CPP, SolarCity Deal Keeps Colton, Calif., Community Affordable and Sustainable

Schools in oil-rich Alberta to get solar panels

Renewable energy on the rise, IEA finds

Researchers discover ways to expand temperature stability range of solar cells

STELLAR CHEMISTRY
Rosatom Considers No Restrictions on Commercial Supplies of Uranium to US

A new method to help solve the problem of nuclear waste

Greenland uranium mining opponents join government

Bulgaria to pay Russia 600 mn euros for dropped nuclear plant

STELLAR CHEMISTRY
Turning biofuel waste into wealth in a single step

State partnerships can promote increased bio-energy production, reduce emissions

Biomass heating could get a 'green' boost with the help of fungi

Algae discovery offers potential for sustainable biofuels

STELLAR CHEMISTRY
US, China hold second meeting on advancing space cooperation

China to enhance space capabilities with launch of Shenzhou-11

Ambitious space satellite projects set for liftoff

China's permanent station plans ride on mission

STELLAR CHEMISTRY
Commonwealth brainstorms on climate change reversal

Atmospheric CO2 concentration at Syowa Station in Antarctica exceeds 400 ppm

What the ancient CO2 record may mean for future climate change

Atom-by-atom growth chart for shells helps decode past climate









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.