Energy News  
TECH SPACE
Air lasing: A new tool for atmospheric detection
by Staff Writers
Shanghai, China (SPX) Apr 25, 2022

illustration only

The innovative advances in ultrafast laser technologies provide new strategies for remote sensing of atmospheric pollutants and hazardous biochemical agents. The high-energy femtosecond laser can propagate a long distance without diffraction via femtosecond laser filamentation. Besides, abundant secondary radiations, e.g., supercontinuum white light, air lasing, fluorescence, provide natural probe sources for atmospheric detection at a remote location.

Particularly, the discovery and intensive investigation of air lasing induced by intense femtosecond laser pulses open an exciting perspective for atmospheric remote sensing due to its ability of generating cavity-free light amplification in the open air. Although significant efforts have been paid to air-lasing-based remote sensing, the realistic application still remains challenging due to the limit of the detection sensitivity and signal stability.

Recently, the research team from the Shanghai Institute of Optics and Fine Mechanics (SIOM) of Chinese Academy of Sciences proposed an air-lasing-assisted coherent Raman spectroscopy, realizing quantitative measurement and simultaneous detection of two greenhouse gases, as well as identification of CO2 isotopes. The detection sensitivity reaches the level of 0.03% and the minimum signal fluctuation is about 2%. The work has been published in Ultrafast Science.

In the developed Raman spectroscopy, a femtosecond laser excites the optical gain of molecular nitrogen ions and achieves a seed amplification of more than 1,000 times, resulting in 428 nm air lasing with a linewidth of 13 cm-1. Meanwhile, the spectral width of the pump laser has reached 3800 cm-1 after nonlinear propagation, enabling excitation of molecular coherent vibrations of most pollutants and greenhouse gases.

When air lasing encounters coherently vibrating molecules, it will effectively produce coherent Raman scattering. By recording the frequency difference of Raman signal and air lasing, the molecular "identity information" can be known. Thus, such a Raman scheme combines the advantages of the femtosecond laser and air lasing, it thus can meet the needs of multi-component measurement and chemical specificity.

Some specific designs used in this work, especially the optimization of pump-seed delay and the choice of perpendicular polarization, ensure a high detection sensitivity and signal stability. It was shown that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%, respectively.

The minimum signal fluctuation reached the level of 2%. The research team also demonstrated that the technique can be applied for simultaneous measurement of CO2 and SF6. More importantly, the measured Raman spectrum can well distinguish 12CO2 and 13CO2.

The simultaneous measurement of various pollutants, greenhouse gases as well as the detection of CO2 isotopes are of great significance for tracing the sources of air pollution and studying the carbon cycling. This is a significant advantage of the proposed technique as compared to traditional remote sensing methods.

However, for realistic application of trace gas remote detection, it is necessary to improve the detection sensitivity to the ppm or even ppb level, as well as extend the detection distance from the laboratory scale to the kilometer scale. It is expected that such a goal can be realized in the near future with the development of high-repetition, high-energy femtosecond laser technologies.

Research Report:High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy


Related Links
Shanghai Institute of Optics and Fine Mechanics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Lasers trigger magnetism in atomically thin quantum materials
Seattle WA (SPX) Apr 22, 2022
Researchers have discovered that light - in the form of a laser - can trigger a form of magnetism in a normally nonmagnetic material. This magnetism centers on the behavior of electrons. These subatomic particles have an electronic property called "spin," which has a potential application in quantum computing. The researchers found that electrons within the material became oriented in the same direction when illuminated by photons from a laser. The experiment, led by scientists at the University o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
EU needs to recycle more to hit green energy goals: report

Canada stumbling in transition to low-carbon economy

Paris climate targets feasible if nations keep vows

Lots of low- and no-cost ways to halt global warming

TECH SPACE
Electric, low-emissions alternatives to carbon-intensive industrial processes

Sulfonamides make robust cathode material for proton batteries

Reversible fuel cells can support grid economically

A catalyst for the development of carbon-neutral technology of the radiation accelerator

TECH SPACE
Transport drones for offshore wind farms

Lack of marshaling ports hindering offshore wind industry

Favourable breezes boost Spain's wind power sector

Brazil to hold first offshore wind tender by October: official

TECH SPACE
Illuminating perovskite photophysics

Beaming solar power from satellite array is Earth Day focus for AFRL

Solar Power Bank Buying Guide

Lucy is "Go" for solar array deployment attempt

TECH SPACE
Switzerland demands curbs on Russian UN nuclear official

Toshiba pauses spin-off plan, weighs going private

In 'project of the century', Swiss seek to bury radioactive waste

Safely storing Canada's used nuclear fuel for millennia

TECH SPACE
Dung power: India taps new energy cash cow

Biden's biofuel: Cheaper at the pump, but high environmental cost?

Fuel from waste wood

Breaking down plastic into its constituent parts

TECH SPACE
Cheaper hydrogen fuel cell could mean better green energy options

Activists block Russian oil tanker in Norway

Development of magnetic cooling materials that enable efficient hydrogen liquefaction

Oil prices up as traders weigh demand and supply issues

TECH SPACE
Third dust storm in two weeks sweeps through Iraq

Under shadow of drought, Santiago ditches exotic plants

20 million risk starvation as Horn of Africa drought worsens: UN

Climate activists disrupt traffic in London, Paris









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.