Energy News  
EARLY EARTH
After the age of dinosaurs came the age of ant farmers
by Staff Writers
Panama City, Panama (SPX) Jul 21, 2016


A fungus-farming ant colony is a complex society with division of labor among many size classes. In this close-up, tiny nurse ants tending to white ant larvae are dwarfed by the queen ant in the upper right. All the ants feed upon protein-rich food produced by a white-grey fungus that they cultivate underground. The fungus decomposes fresh, leafy greens brought underground by leafcutters, which can defoliate whole trees to feed the colony. Credit: Karolyn Darrow.

A group of South American ants has farmed fungi since shortly after the dinosaurs died out, according to an international research team including Smithsonian scientists. The genes of the ant farmers and their fungal crops reveal a surprisingly ancient history of mutual adaptations. This evolutionary give-and-take has led to some species - the leafcutter ants - developing industrial-scale farming that surpasses human agriculture in its efficiency.

The key chapters of the history of ant agriculture are written into the genes of both the insects and their crop fungi. A team including Jacobus Boomsma, research associate at the Smithsonian Tropical Research Institute and biology professor at the University of Copenhagen with his colleagues there, Sanne Nygaard and Guojie Zhang, looked at the genes of seven species of farming ants and their associated fungi to understand how the partnership developed.

In a study published in Nature Communications, the scientists found that 55 to 60 million years ago ants belonging to the tribe Attini switched from a hunter-gatherer lifestyle to subsistence farming of fungi that grew on decomposing, woody plant matter. The slow-growing fungi sustained tiny colonies of ants, but it was the first step toward agriculture on a much larger scale.

"The ants lost many genes when they committed to farming fungi," said Boomsma. This tied the fate of the ants to their food - with the insects depending on the fungi for nutrients, and the fungi increasing their likelihood of survival if they produced more nutritious crop. "It led to an evolutionary cascade of changes, unmatched by any other animal lineage studied so far."

The researchers found that around 25 million years ago one lineage of fungus-farming ants began cultivating fungi that produced tiny, protein-rich bulbs that the ants preferentially harvested. More nutritious food supported larger colonies, spurring even more advances in ant-fungus co-evolution until, 15 million years ago, the leafcutter ants emerged. Leafcutter ant species cut and sow their underground farms daily with fresh, green plant matter, cultivating a fully domesticated species of fungus on an industrial scale that can sustain colonies with up to millions of ants.

Domestication changed both partners in the relationship. Unlike its ancestors and present-day wild relatives, the leafcutter ants' fungus can no longer produce enzymes that digest woody plant matter, making it reliant on leafy greens brought in by the ants.

In turn, the fungus produces fruiting bodies swollen with proteins essential for the ants' growth. The ants have evolved special enzymes to easily digest this superfood and cannot eat anything else. Unable to survive without each other, the symbiotic leafcutters and their fungi nonetheless form the largest colonies of any of the fungus-farming ants. They work together as the dominant herbivores in Neotropical forests.

By contrast, humans began subsistence farming around 10,000 years ago, progressing to industrialized agriculture only in the past century. Put in human terms, Boomsma said, the leafcutter ants' success is akin to people figuring out how to grow a single, all-purpose, disease-, pest- and drought-resistant superfood at an industrial scale, "by the time of the ancient Greek civilization."

Much of the research on fungus-farming ants comes from scientists working in Panama through the Smithsonian Tropical Research Institute during the past 25 years. The new study is one of the first attempts at looking at the entire genetic makeup of both the ants and the fungi, instead of just a few selected genes of interest.

Co-author Ted Schultz of the Smithsonian's National Museum of Natural History said there is plenty more to discover. "Because our genome data from five ants and six fungi are publicly available, we hope additional researchers will study them in the years to come."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Smithsonian Tropical Research Institute
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
The success of the plant-eating dinosaurs
Bristol UK (SPX) Jul 19, 2016
There has been a long debate about why dinosaurs were so successful. Say dinosaur, and most people think of the great flesh-eaters such as Tyrannosaurus rex, but the most successful dinosaurs were of course the plant-eaters. A new study from the University of Bristol, led by Masters of Palaeobiology student Eddy Strickson, has presented clear evidence about how plant-eating dinosaurs evolv ... read more


EARLY EARTH
Sweden's 100 percent carbon-free emissions challenge

Norway MPs vote to go carbon neutral by 2030

Algorithm could help detect and reduce power grid faults

It pays to increase energy consumption

EARLY EARTH
Organic molecules could store energy in flow batteries

WSU researchers determine key improvement for fuel cells

Electricity generated with water, salt and an ultra thin membrane

Atomic bits despite zero-point energy

EARLY EARTH
Offshore wind the next big thing, industry group says

France's EDF buys Chinese wind energy firm

Scotland commits $26M for low-carbon economy

More wind power added to French grid

EARLY EARTH
World touring solar plane's final leg to UAE delayed

Unearthing the true cost of fossil fuels and the true value of photovoltaics

New milestone in printed photovoltaic technology

Bavarian village pioneers clean energy revolution

EARLY EARTH
EU investigates rescue of nuclear firm Areva

France's EDF to decide on UK nuclear project next week

Indian NPP Second Unit May Start Commercial Operations in November

China 'may build nuclear plants' in South China Sea

EARLY EARTH
Olive oil waste yields molecules useful in chemical and food industries

One reaction, two results, zero waste

Neural networks to obtain synthetic petroleum

From climate killer to fuels and polymers

EARLY EARTH
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

EARLY EARTH
We're lucky climate change didn't happen sooner

Long-awaited breakthrough in the reconstruction of warm climate phases

EU defies Brexit with climate targets

Groundwater discharge to upper Colorado River Basin varies in response to drought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.