Energy News  
TECH SPACE
Advances in the design and manufacturing of novel freeform optics
by Staff Writers
Huddersfield UK (SPX) Jul 15, 2022

file illustration only

Freeform optics bring precision optical systems into a new ear, delivering superior imaging in compact packages, or functions otherwise impossible. Surfaces that are axially unbalanced or have no axis of rotational invariance are known as freeform surfaces. Advanced freeform optical designs supplementary to ultra-precision manufacturing and metrology techniques have upgraded the lifestyle, thinking, and observing power of existing humans. Imaginations related to space explorations, portability, accessibility have also witnessed sensible in today's time with freeform optics. The optics, space, automotive, defense industries and many more are directly dependent on the time and cost involved in the complete production of advance designed freeform optics.

In a new paper published in the International Journal of Extreme Manufacturing, a team of researchers, led by Dr Zhen Tong from the Centre for Precision Technology, University of Huddersfield, United Kingdom, have summarized comprehensively the present state of the art of advances in freeform optics, its design methods, manufacturing, metrology, and their applications. The main aim in this review is to address certain questions like; What is our new understanding regarding freeform optics? At what stage have we reached in terms of developments and the applications of freeform surfaces in optical systems? How many efficient tools we have been developed in aspects of design, fabrication, and production? What are the main challenges in freeform optics production?

Various freeform optics and systems are designed with different methods such as partial differential equations, tailoring methods, point-to-point mapping, simultaneous multiple surface method, and aberration-based performance optimizations. All the final designs obtained using these methods are directly or indirectly associated with the Ultra-precision machining for fabrication at the nano or sub-nanometric level. To meet the requirements of the current market, process chains are dependent on the manufacturing types i.e. make-to-order, make-to-assemble and make-to-stock. Ultra-precision machining along with the figure correction techniques are the most trusted technologies for the development of freeform optics that fulfil the desired requirements of topographical errors such as low-, mid-, and high-spatial frequencies. With the multiple axes ultra-precision diamond cutting, one can fabricate the complexed shape at high accuracy and obtain a smooth optical surface.

Surface shape metrology will continue to be in high demand as a vital enabler for conforming to manufacturing chain criteria. Metrology's complexity increases with the increase in degree-of-freedom of freeform optics to be tested. Measurement problems for freeform optics rise with the sag differences, slopes, depths, surface roughness, measurement speed, environmental factors, temperature control, and aperture size. Because of these factors the cost of the whole freeform optics increases, therefore a proper balance must be maintained between controllable parameters to keep the final product cost within a limited range. Metrology can be done in several ways such as in-situ monitoring and off-line testing during and after fabricating the components.

Professor Dame Xiangqian Jiang (Director of EPSRC Future Metrology Hub, CPT), Dr Zhen Tong (Head of Ultra-precision Machining Group, CPT) and Mr Sumit Kumar (PhD Scholar) have identified a few critical challenges in the field of design, manufacturing, and metrology of freeform optics as follows:

"There is no such standard definition or tolerances for freeform surfaces that can be classified based on their performance. Is it possible to determine the relationship between surface roughness and specified tolerance at the design stage?"

"Design can be accomplished with the help of commercial optical design software such as Code V, Zemax, etc., however, the optimizations of complicated optical systems take a long duration of time to reach their optimum global solutions."

"Is it possible to develop a repeatable system for determining when and where the intended freeform optical surface should be positioned for optimal optical performance?"

"For novel freeform optics, manual analyses of manufacturing constraints in the design phase stand unreliable, impractical, and impossible. No doubt, there are custom software for freeform optics and will continue to become mainstream. However, fast and reliable solutions are required."

"As long as we want light, the demand for freeform optics will exists. How far we are to adopt complete solutions of sustainable manufacturing for the freeform optics?"

"Development towards special measurement system for modern optics of any size and features that can perform all types of measurements. This can have benefits such as reduced cost, measuring time, complexity, wear, data-processing and increase in planning time and production."

Researchers have suggested that the freeform optics must follow 3F's principle i.e. form, fit, and function. In achieving the 3F's of the freeform optical components and freeform optical systems, time plays a major role. Therefore, particularly for freeform optics advanced economical processes should be developed that does not negotiate the designer's efforts, reduces the time of assembly and testing and also reduces the energy consumption, and wastage of materials.

Research Report:Advances in the design and manufacturing of novel freeform optics


Related Links
University of Huddersfield
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
MIT engineers design surfaces that make water boil more efficiently
Boston MA (SPX) Jul 12, 2022
The boiling of water or other fluids is an energy-intensive step at the heart of a wide range of industrial processes, including most electricity generating plants, many chemical production systems, and even cooling systems for electronics. Improving the efficiency of systems that heat and evaporate water could significantly reduce their energy use. Now, researchers at MIT have found a way to do just that, with a specially tailored surface treatment for the materials used in these systems. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Debunking the myths that discourage public funding of clean energy

Biden to announce new action on climate in major speech

UK climate chief hints at resignation as Tory race heats up

Solar Energy - It's Time to Harness the Sun's Energy

TECH SPACE
Fusion's newest ambassador at MIT

Sumitomo invests in TAE Technologies for Fusion Reactor development

PPPL scientists propose solution to a long-puzzling fusion problem

Longer lasting sodium-ion batteries on the horizon

TECH SPACE
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

TECH SPACE
Explained: Why perovskites could take solar cells to new heights

New world records: Perovskite-on-silicon-tandem solar cells

Netherlands seeks space for solar power

Solar cells printed on steel for buildings generate clean energy, researchers say

TECH SPACE
UK approves major new nuclear plant

Russia shelling from Europe's largest nuclear plant: Ukraine agency

France to launch buy-out of power giant EDF

Better estimating the risk of coastal flooding for nuclear power plants

TECH SPACE
MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

Technologies boost potential for carbon dioxide conversion to useful products

Study points to Armenian origins of ancient crop with aviation biofuel potential

TECH SPACE
Oil dispute sharpens Baghdad-Kurd tensions amid deadlock

How Blue Condor will accelerate Airbus' first hydrogen-powered test flights

Saudi warns against 'unrealistic' policies to curb emissions

Cerulean Winds aims to make UK's oil and gas production cleanest in the world

TECH SPACE
War must not stop climate fight as German weather disaster costs mount

Uganda says several dead 'because of hunger' in northeast

Mexico declares drought emergency

Indonesian islanders sue cement giant Holcim over climate damage









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.