Energy News  
ROBO SPACE
Actuator discovery outperforms existing technology
by Staff Writers
Houston TX (SPX) Sep 07, 2021

Depiction of the application of organic semiconductor nanotubes in artificial muscle. Artwork courtesy of Mohammad Reza Abidian.

University of Houston researchers are reporting a breakthrough in the field of materials science and engineering with the development of an electrochemical actuator that uses specialized organic semiconductor nanotubes (OSNTs).

Currently in the early stages of development, the actuator will become a key part of research contributing to the future of robotic, bioelectronic and biomedical science.

"Electrochemical devices that transform electrical energy to mechanical energy have potential use in numerous applications, ranging from soft robotics and micropumps to autofocus microlenses and bioelectronics," said Mohammad Reza Abidian, associate professor of biomedical engineering in the UH Cullen College of Engineering. He's the corresponding author of the article "Organic Semiconductor Nanotubes for Electrochemical Devices," published in the journal Advanced Functional Materials, which details the discovery.

Significant movement (which scientists define as actuation and measure as deformation strain) and fast response time have been elusive goals, especially for electrochemical actuator devices that operate in liquid. This is because the drag force of a liquid restricts an actuator's motion and limits the ion transportation and accumulation in electrode materials and structures. In Abidian's lab, he and his team refined methods of working around those two stumbling blocks.

"Our organic semiconductor nanotube electrochemical device exhibits high actuation performance with fast ion transport and accumulation and tunable dynamics in liquid and gel-polymer electrolytes. This device demonstrates an excellent performance, including low power consumption/strain, a large deformation, fast response and excellent actuation stability," Abidian said.

This outstanding performance, he explained, stems from the enormous effective surface area of the nanotubular structure. The larger area facilitates the ion transport and accumulation, which results in high electroactivity and durability.

"The low power consumption/strain values for this OSNT actuator, even when it operates in liquid electrolyte, mark a profound improvement over previously reported electrochemical actuators operating in liquid and air," Abidian said. "We evaluated long-term stability. This organic semiconductor nanotube actuator exhibited superior long-term stability compared with previously reported conjugated polymer-based actuators operating in liquid electrolyte."

Joining Abidian on the project were Mohammadjavad Eslamian, Fereshtehsadat Mirab, Vijay Krishna Raghunathan and Sheereen Majd, all from the Department of Biomedical Engineering at the UH Cullen College of Engineering.

The organic semiconductors used, called conjugated polymers, were discovered in the 1970s by three scientists - Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa - who won a Nobel prize in 2000 for the discovery and development of conjugated polymers.

For a new type of actuator to outshine the status quo, the end product must prove not only to be highly effective (in this case, in both liquid and gel polymer electrolyte), but also that it can last.

"To demonstrate potential applications, we designed and developed a micron-scale movable neural probe that is based on OSNT microactuators. This microprobe potentially can be implanted in the brain, where neural signal recordings that are adversely affected, by either damaged tissue or displacement of neurons, may be enhanced by adjusting the position of the movable microcantilevers," said Abidian.

The next step is animal testing, which will be undertaken soon at Columbia University. Early results are expected by the end of 2021, with longer term tests to follow.

"Considering the achievements so far, we anticipate these new OSNT-based electrochemical devices will help advance the next generation of soft robotics, artificial muscles, bioelectronics and biomedical devices," Abidian said.

Research Report: "Organic Semiconductor Nanotubes for Electrochemical Devices"


Related Links
University Of Houston
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Humanoid robots catch the eye of humans when interacting
Genova, Italy (SPX) Sep 02, 2021
Gaze is an extremely powerful and important signal during human-human communication and interaction, conveying intentions and informing about other's decisions. What happens when a robot and a human interact looking at each other? Researchers at IIT-Istituto Italiano di Tecnologia (Italian Institute of Technology) investigated whether a humanoid robot's gaze influences the way people reason in a social decision-making context. What they found is that a mutual gaze with a robot affects human neural activ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
UK 'ditched' climate pledge to secure Australia trade deal

UK watchdog slams government's failed green homes plan

What can central banks do to address climate risks?

Price tag on the planet? Helping business value nature

ROBO SPACE
New opportunities for light-powered battery and fuel cell design

When walked on, these wooden floors harvest enough energy to turn on a lightbulb

Using liquid metal to turn motion into electricity even underwater

Turning thermal energy into electricity could help soldiers

ROBO SPACE
How do wind turbines respond to winds, ground motion during earthquakes?

For golden eagles, habitat loss is main threat from wind farms

Wind turbines can be clustered while avoiding turbulent wakes of their neighbors

Shell, France's EDF to build US offshore windfarm

ROBO SPACE
High-efficiency perovskite tandem solar cells using cross-linked layers

WTO rules for US in Chinese solar tariff dispute

North African sun offers green hope but state role key

Sandia uncovers hidden factors that affect solar farms during severe weather

ROBO SPACE
Seventh nuclear shipment to leave France for Japan

Moscow vies for Arctic clout with nuclear icebreaker fleet

Framatome completes acquisition of BHR Group in the United Kingdom

Protests as France sends latest nuclear shipment to Japan

ROBO SPACE
UMD to create sustainable biofuels and bioplastics from food waste with DOE grant

Zeolites make for efficient production of pentanoic biofuels

Bacteria may hold key for energy storage, biofuels

Biofuel potential from wastewater ponds

ROBO SPACE
France's TotalEnergies signs $27bn oil, gas, solar deal in Iraq

Mining waste could be used as an ingredient for cheaper hydrogen fuel production

Crews work to contain oil spill in Gulf after Ida's passage

Making the case for hydrogen in a zero-carbon economy

ROBO SPACE
UN rejects call to delay COP26 climate summit

Climate change blamed for havoc in northeast US floods

China minister says 'ball in Washington's court' for climate cooperation

US climate envoy Kerry to visit China, Japan ahead of summit









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.