Energy News  
TECH SPACE
Accelerated analysis of the stability of complex alloys
by Staff Writers
Bochum, Germany (SPX) Jan 03, 2018


Prof Dr Alfred Ludwig, Dr Yujiao Li, Alan Savan and Dr Aleksander Kostka

Material scientists at Ruhr-Universitat Bochum are able to determine if a new material remains stable under temperature load within the space of a few days. They have developed a novel process for analysing, for example, the temperature and oxidation resistance of complex alloys that are made up of a number of different elements. Previously, such analyses used to take months. The team headed by Prof Dr Alfred Ludwig and Dr Yujiao Li from the Institute for Materials and Center for Interface-Dominated High Performance Materials describes the process in the journal "Materials Horizons".

This method is ideally suited for so-called high-entropy alloys - materials that have recently been of great interest to researchers. Unlike traditional alloys, they do not consist of one main element and several additional elements in lower concentrations, but rather of a homogenous mixture of several elements.

"These alloys constitute a new resource for new materials. With an almost unlimited number of different material combinations, it is quite likely that materials will be discovered that surpass current materials with regard to certain properties," says Ludwig. The decisive factor is that the alloys remain stable and do not disintegrate into individual components even if they are exposed to thermal or chemical stress during application.

"This is why this method is so important," adds Ludwig.

"It can be used for testing potential candidates on the atomic scale within a short space of time."

Combination of methods is the key
Prior to deployment in industrial applications, any newly developed material has to be tested with regard to different parameters, for example its temperature resistance and oxidation sensitivity. In order to accelerate these tests, the groups from Bochum have developed a combination of several methods.

They applied the complex alloy as a layer with a thickness of merely a few nanometres to 36 microscopically small tips. For this purpose, they deployed the sputter deposition method to deposit a specific mixture ratio of five metals to the tips simultaneously. In the thus applied layers, the metals can react with each other very quickly. The authors refer to the system as combinatorial processing platform.

Rendering millions of atoms visible
Subsequently, the researchers exposed the individual tips to different types of stress and used Atom Probe Tomography to characterise the composition of the layer after each stress exposure. The technology facilitates both a three-dimensional visualisation of millions of atoms and the distinction between different elements.

Atom Probe Tomography destroys the sample in the spot where it was tested; consequently, at least one coated tip is used up per measurement. However, as they had 36 identical tips at their disposal, the researchers were able to perform many tests in close succession.

Option to test for different properties
In the first step, for example, they applied heat to the sample until it reached a certain temperature; then they used the atom probe to test what effect thermal stress had on the alloy, applied heat once again to reach a higher temperature, tested the alloy again etc.

"Using this method, we can very quickly tell that the analysed alloy disintegrates into several different phases at temperatures above 300 degrees centigrade," says Ludwig.

"Moreover, we are able to explore its oxidation sensitivity and reactions in different ambient media." Based on the comprehensive measurement data and new visualisation methods for these data, the researchers can thus gain a grasp of phase evolution in complex alloys within a much shorter space of time than with traditional methods.

Research paper

TECH SPACE
Russian scientists suggested a new technology for creating magnet micro-structures
Krasnoyarsk, Russia (SPX) Jan 02, 2018
A team of scientists from Krasnoyarsk Scientific Center (Siberian Department of Russian Academy of Sciences) and Siberian Federal University synthesized thin crystal ferromagnetic films and developed a technology for their shaping. Processed films can be used in electronic and spintronic chips. The results of the study were published in Thin Solid Films journal. The team created films that ... read more

Related Links
Ruhr-University Bochum
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Alaskan microgrids offer energy resilience and independence

Science for a resilient EU power grid

U.S. blizzard to test gas, electric markets

'Virtual gold' may glitter, but mining it can be really dirty

TECH SPACE
HP recalls computer batteries over fire risk

Modeling helped to improve the configuration of an autonomous heat supply unit

Exploring electrolysis for energy storage

Thermoelectric power generation at room temperature: Coming soon?

TECH SPACE
The wave power farm off Mutriku could improve its efficiency

Turkey gets European loan for renewable energy

Oil-rich Alberta sees momentum for wind energy

Construction to start on $160 million Kennedy Energy Park in North Queensland

TECH SPACE
Siting solar, sparing prime agricultural lands

Standardizing perovskite aging measurements

New technique allows rapid screening for new types of solar cells

Laser Evaporation Technology to Create New Solar Materials

TECH SPACE
Dominion Energy to buy troubled SCANA and shuttered nuclear projects

REVA NP installs I and C upgrade at Krsko nuclear power plant

Struggling Westinghouse Electric sold to Brookfield for $4.6 bn

New model considers an extra factor to improve our prediction of nuclear fission

TECH SPACE
Farmers in Kenya willing, able to ramp up croton nut output for biofuel

A catalytic balancing act

Locating the precise reaction path: Methane dissociation on platinum

A fossil fuel technology that doesn't pollute

TECH SPACE
Environmentalists lose lawsuit over Norway's Arctic oil licenses

Interior Department plans massive expansion of offshore drilling

Trump administration seeks to open most US waters to offshore oil drilling

U.S. storms, data waiting-game leave oil steady early Thursday

TECH SPACE
Global warming could leave 25 percent of the planet in permanent drought

Curbing climate change

New York unveils new climate initiatives for 2018

Droughts and ecosystems are determined by the interaction of two climate phenomena









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.