Energy News
CHIP TECH
Absolute zero in the quantum computer
When many quantum particles interact, complex systems can be formed. And this complexity allows reaching a temperature of absolute zero - at least in principle.
Absolute zero in the quantum computer
by Staff Writers
Vienna, Austria (SPX) Apr 10, 2023

The absolute lowest temperature possible is -273.15 degrees Celsius. It is never possible to cool any object exactly to this temperature - one can only approach absolute zero. This is the third law of thermodynamics.

A research team at TU Wien (Vienna) has now investigated the question: How can this law be reconciled with the rules of quantum physics? They succeeded in developing a "quantum version" of the third law of thermodynamics: Theoretically, absolute zero is attainable. But for any conceivable recipe for it, you need three ingredients: Energy, time and complexity. And only if you have an infinite amount of one of these ingredients can you reach absolute zero.

Information and thermodynamics: an apparent contradiction
When quantum particles reach absolute zero, their state is precisely known: They are guaranteed to be in the state with the lowest energy. The particles then no longer contain any information about what state they were in before. Everything that may have happened to the particle before is perfectly erased. From a quantum physics point of view, cooling and deleting information are thus closely related.

At this point, two important physical theories meet: Information theory and thermodynamics. But the two seem to contradict each other: "From information theory, we know the so-called Landauer principle. It says that a very specific minimum amount of energy is required to delete one bit of information," explains Prof. Marcus Huber from the Atomic Institute of TU Wien. Thermodynamics, however, says that you need an infinite amount of energy to cool anything down exactly to absolute zero. But if deleting information and cooling to absolute zero are the same thing - how does that fit together?

Energy, time and complexity
The roots of the problem lie in the fact that thermodynamics was formulated in the 19th century for classical objects - for steam engines, refrigerators or glowing pieces of coal. At that time, people had no idea about quantum theory. If we want to understand the thermodynamics of individual particles, we first have to analyse how thermodynamics and quantum physics interact - and that is exactly what Marcus Huber and his team did.

"We quickly realised that you don't necessarily have to use infinite energy to reach absolute zero," says Marcus Huber. "It is also possible with finite energy - but then you need an infinitely long time to do it." Up to this point, the considerations are still compatible with classical thermodynamics as we know it from textbooks. But then the team came across an additional detail of crucial importance:

"We found that quantum systems can be defined that allow the absolute ground state to be reached even at finite energy and in finite time - none of us had expected that," says Marcus Huber. "But these special quantum systems have another important property: they are infinitely complex." So you would need infinitely precise control over infinitely many details of the quantum system - then you could cool a quantum object to absolute zero in finite time with finite energy. In practice, of course, this is just as unattainable as infinitely high energy or infinitely long time.

Erasing data in the quantum computer
"So if you want to perfectly erase quantum information in a quantum computer, and in the process transfer a qubit to a perfectly pure ground state, then theoretically you would need an infinitely complex quantum computer that can perfectly control an infinite number of particles," says Marcus Huber. In practice, however, perfection is not necessary - no machine is ever perfect. It is enough for a quantum computer to do its job fairly well. So the new results are not an obstacle in principle to the development of quantum computers.

In practical applications of quantum technologies, temperature plays a key role today - the higher the temperature, the easier it is for quantum states to break and become unusable for any technical use. "This is precisely why it is so important to better understand the connection between quantum theory and thermodynamics," says Marcus Huber. "There is a lot of interesting progress in this area at the moment. It is slowly becoming possible to see how these two important parts of physics intertwine."

Research Report:Landauer Versus Nernst: What is the True Cost of Cooling a Quantum System?

Related Links
Vienna University of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
DMI allows magnon-magnon coupling in hybrid perovskites
Raleigh NC (SPX) Apr 10, 2023
An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii-Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information. The work also expands the number of potential materials that can be used to create hybrid magnonic systems. In magnetic materials, quasi-particles called magnons direct the electron spin within the material. There are two types of magnon ... read more

CHIP TECH
Cities will need more resilient electricity networks to cope with extreme weather

Sun, wind power make record 12% of world electricity: survey

Fossil fuel pledges divide G7 in 'critical decade' for climate

Only 5% of top UK firms have 'credible' net zero plans: study

CHIP TECH
Fish-inspired, self-charging electric battery may help power space applications

Tesla to build battery plant in Shanghai: state media

New 'smart layer' could enhance durability and efficiency of solid-state batteries

Underground water could be the solution to green heating and cooling

CHIP TECH
Wind farms drive away certain seabirds: study

Wind project near S.African elephant park riles activists

UK offshore staff 'want public ownership of energy firms'

Machine learning could help kites and gliders to harvest wind energy

CHIP TECH
High-efficiency sustainable solar cells for IoT devices with AI-powered energy management

Migrating ions through the perovskite layer in two dimensions

KAUST team sets world record for tandem solar cell efficiency

Solar cells charging forward

CHIP TECH
Germany ends nuclear era as last reactors power down

How to decommission a nuclear power plant

Ukraine plant 'living on borrowed time': UN nuclear chief

Hungary says pushing ahead with Russia-backed nuclear plant expansion

CHIP TECH
Dutch refinery to feed airlines' thirst for clean fuel

Low concentration CO2 can be reused as plastic precursor using artificial photosynthesis

Queensland biofuel refinery to turn agricultural by-products into sustainable aviation fuel

Turning vegetable oil industry waste into power

CHIP TECH
Targets for a heating planet: G7 climate commitments

Qatar gives China share of landmark natural gas field

Kazakhstan takes global majors to court over oilfield revenues: minister

How Japan's big plans for a 'hydrogen society' fell flat

CHIP TECH
Unsound climate studies sneak into print: scientists

COP28 head urges 'accessible' global climate finance

Tunisia drought threatens 'catastrophic' grain harvest

NASA launches climate-focused Startup Studio with Technology Incubator

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.