Subscribe free to our newsletters via your
. Energy News .




CHIP TECH
A thin ribbon of flexible electronics can monitor health, infrastructure
by Staff Writers
Boston MA (SPX) Aug 18, 2015


Stretchy, bendable electronics could have many uses, such as monitoring patients' health and keeping tabs on airplanes. Image courtesy Benjamin Leever, Ph.D. For a larger version of this image please go here.

A new world of flexible, bendable, even stretchable electronics is emerging from research labs to address a wide range of potentially game-changing uses. The common, rigid printed circuit board is slowly being replaced by a thin ribbon of resilient, high-performance electronics. Over the last few years, one team of chemists and materials scientists has begun exploring military applications in harsh environments for aircraft, explosive devices and even combatants themselves.

Researchers will provide an update on the latest technologies, as well as future research plans, at the 250th National Meeting and Exposition of the American Chemical Society (ACS). ACS is the world's largest scientific society. The meeting takes place here through Thursday.

"Basically, we are using a hybrid technology that mixes traditional electronics with flexible, high-performance electronics and new 3-D printing technologies," says Benjamin J. Leever, Ph.D., who is at the Air Force Research Laboratory at Wright-Patterson Air Force Base.

"In some cases, we incorporate 'inks,' which are based on metals, polymers and organic materials, to tie the system together electronically. With our technology, we can take a razor-thin silicon integrated circuit, a few hundred nanometers thick, and place it on a flexible, bendable or even foldable, plastic-like substrate material," he says.

To allow electronics to be bendable or stretchable or even change their configuration after fabrication, the Wright-Patterson team has turned to liquid gallium alloys as an electrical interconnect material, Leever says.

"While these liquid alloys typically oxidize within minutes and become essentially useless," he says, "the team has been able to dramatically reduce the effects of the oxidation through the use of ionic species confined to the walls of microvascular channels within the flexible substrates."

The result is thin, foldable material that allows the circuitry to fit into extremely tight spaces and even to be integrated into complex curved surfaces, such as an airplane's wing, or even a person's skin.

In aircraft applications, Leever explains, the hybrid flexible system can be used to monitor stresses and strains and report this information through miniature embedded antennas to ground crews or a pilot. The researchers also are developing the same approach to monitor pilots' health. This involves a biosensor system that can measure heartbeat, hydration levels, sweat, temperature and other vital signs through miniature circuitry.

The system would be embedded on a flexible, wearable patch and would include an antenna to transmit these biometric signals to the pilot or a ground team. The patch will "breathe," bend and stretch, and will provide real-time measurements of metrics that indicate fatigue or potential cognitive problems, Leever notes.

Another military application the Air Force is pursuing is use of a flexible hybrid system in "bunker buster" bombs, which detonate after penetrating deep in the earth. Because of the system's toughness, Leever says, initial testing suggests that the flexible circuitry would remain viable and could detonate the weapon after surviving the initial impact of ground contact after being dropped from aircraft.

In the civilian world, Leever foresees use of flexible systems to monitor the conditions of bridges and other types of infrastructure in real time. He also points to medical applications, such as physical feedback for athletes as they exercise and real-time hospital monitoring for caregivers concerned about changes in a patient's vital signs. This type of monitoring dispenses with the need for the bulky electrodes and wiring that normally are associated with close medical surveillance.

"Overall, the military has the advantage of being able to move ahead with potentially higher risk research," he explains. "Commercial investors want a clear demonstration before making an investment. The military can pursue possibly transformational applications at earlier stages if we see a promising approach to realize and advance a technology's revolutionary potential. When we are successful, the commercial sector directly benefits."

Leever adds that the Wright-Patterson team is part of a newly created Department of Defense-led Flexible Hybrid Electronics Manufacturing Innovation Institute, which was announced by President Barack Obama last December. Over the next five years, $75 million will be offered in matching grants to spur domestic development of flexible hybrid electronics manufacturing.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Chemical Society
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Back to the Future: Next-Generation Vacuum Electronics
Washington DC (SPX) Aug 12, 2015
Solid-state electronics began to overtake vacuum tubes in radios, computers and other electronic and radio frequency gadgetry more than 60 years ago. Now we live in a Silicon Age. Even so, vacuum electronic devices, whose origins date to the 19th century, touch our lives every day. Those microwaves that heat the food in your microwave oven come from a magnetron, the vacuum tube that made r ... read more


CHIP TECH
Fifteen US states try to block Obama clean power plan

Earth's 2015 quota of renewable resources used up: NGO

New Zealand puts bets on diverse energy mix

Australia PM Abbott defends emissions target

CHIP TECH
'Yolks' and 'shells' improve rechargeable batteries

Two spin liquids square off in an iron-based superconductor

Better together: Graphene-nanotube hybrid switches

New Zealand marks end to coal power

CHIP TECH
Prysmian secures contract for offshore wind farm inter-array cables

U.S. claims No. 2 position in global wind power

New technology could reduce wind energy costs

Study finds price of wind energy in US at an all-time low

CHIP TECH
SunShare Flips the Switch on Colorado Spring's Largest Solar Garden

U.S. solar costs down, but so too are incentives

SkyPower wins 200 MW PV project in Telangana, India

PV Energy to provide Antigua and Barbuda with clean solar power

CHIP TECH
What is the importance of nuclear power in Japan?

Japan ends nuclear shutdown sparked by Fukushima crisis

Fifth Belgian reactor shuts down but no danger: operator

Russian, Egyptian companies prepare contracts for NPP Project

CHIP TECH
Biochemist studies oilseed plants for biofuel, industrial development

Genes of a common pond algae reveal great potential

Turning cow poo into power is profitable for US farm

Motile and cellulose degrading bacteria used for solid state cellulose hydrolysis

CHIP TECH
China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

CHIP TECH
Climate: butterflies on the brink, say study

Panama declares drought emergency

Australia pledges 26% s cut by 2030

End-of-century Manhattan climate index to resemble Oklahoma City today




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.