Energy News  
STELLAR CHEMISTRY
A stream of superfluid light
by Staff Writers
Montreal, Canada (SPX) Jun 07, 2017


The flow of polaritons encounters an obstacle in the supersonic (top) and superfluid (bottom) regime. Credit Polytechnique Montreal

Scientists have known for centuries that light is composed of waves. The fact that light can also behave as a liquid, rippling and spiraling around obstacles like the current of a river, is a much more recent finding that is still a subject of active research. The "liquid" properties of light emerge under special circumstances, when the photons that form the light wave are able to interact with each other.

Researchers from CNR NANOTEC of Lecce in Italy, in collaboration with Polytechnique Montreal in Canada have shown that for light "dressed" with electrons, an even more dramatic effect occurs. Light become superfluid, showing frictionless flow when flowing across an obstacle and reconnecting behind it without any ripples.

Daniele Sanvitto, leading the experimental research group that observed this phenomenon, states that "Superfluidity is an impressive effect, normally observed only at temperatures close to absolute zero (-273 degrees Celsius), such as in liquid Helium and ultracold atomic gasses. The extraordinary observation in our work is that we have demonstrated that superfluidity can also occur at room-temperature, under ambient conditions, using light-matter particles called polaritons."

"Superfluidity, which allows a fluid in the absence of viscosity to literally leak out of its container", adds Sanvitto, "is linked to the ability of all the particles to condense in a state called a Bose-Einstein condensate, also known as the fifth state of matter, in which particles behave like a single macroscopic wave, oscillating all at the same frequency.

Something similar happens, for example, in superconductors: electrons, in pairs, condense, giving rise to superfluids or super-currents able to conduct electricity without losses."

These experiments have shown that it is possible to obtain superfluidity at room-temperature, whereas until now this property was achievable only at temperatures close to absolute zero. This could allow for its use in future photonic devices.

Stephane Kena-Cohen, the coordinator of the Montreal team, states: "To achieve superfluidity at room temperature, we sandwiched an ultrathin film of organic molecules between two highly reflective mirrors. Light interacts very strongly with the molecules as it bounces back and forth between the mirrors and this allowed us to form the hybrid light-matter fluid.

"In this way, we can combine the properties of photons such as their light effective mass and fast velocity, with strong interactions due to the electrons within the molecules. Under normal conditions, a fluid ripples and whirls around anything that interferes with its flow. In a superfluid, this turbulence is suppressed around obstacles, causing the flow to continue on its way unaltered".

"The fact that such an effect is observed under ambient conditions", says the research team, "can spark an enormous amount of future work, not only to study fundamental phenomena related to Bose-Einstein condensates with table-top experiments, but also to conceive and design future photonic superfluid-based devices where losses are completely suppressed and new unexpected phenomena can be exploited".

"Room-temperature superfluidity in a polariton condensate", G. Lerario, A. Fieramosca, F. Barachati, D. Ballarini, K. S. Daskalakis, L. Dominici, M. De Giorgi, S. A. Maier, G. Gigli, S. Kena-Cohen, D. Sanvitto, (2017) Nature Physics, in press.

STELLAR CHEMISTRY
Device designed to exploit scattering of light by mechanical vibrations
Sao Paulo, Brazil (SPX) Jun 07, 2017
Researchers at the University of Campinas's Gleb Wataghin Physics Institute (IFGW-UNICAMP) in Sao Paulo State, Brazil, have theoretically developed a silicon photonic device that would enable optical and mechanical waves vibrating at tens of gigahertz (GHz) to interact. The proposed device resulted from the projects "Nanophotonics in Group IV and III-V semiconductors" and "Optomechanics in ... read more

Related Links
Polytechnique Montreal
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
India vows to 'go beyond' Paris accord, adding pressure on Trump

US states, cities and firms unite behind Paris accord

US may do less harm outside climate pact than in it: analysts

China further opens energy sector to private investment

STELLAR CHEMISTRY
Electrocatalyst nanostructures key to improved fuel cells, electrolyzers

'Instantly rechargeable' battery could change the future of electric and hybrid automobiles

Printed, flexible and rechargeable battery can power wearable sensors

Nanoalloys 10 times as effective as pure platinum in fuel cells

STELLAR CHEMISTRY
ADB: Asia-Pacific growth tied to renewables

GE Energy Financial Services Surpasses $15 Billion in Renewable Energy Investments

U.S. states taking up wind energy mantle

Scientists track porpoises to assess impact of offshore wind farms

STELLAR CHEMISTRY
Replacing coal with solar can save lives and money

New low-cost material for lighting and diagnostics produces white light imitating sunlight

Artificial transpiration for solar water purification

Paris withdrawal sets business world at odds with Trump

STELLAR CHEMISTRY
A new twist on the origin of uranium

Nuclear-wary Japan restarts another atomic reactor

Three Mile Island nuclear plant to close in 2019

Why nuclear could become the next 'fossil' fuel

STELLAR CHEMISTRY
Newly identified gene helps time spring flowering in vital grass crops

Splitting carbon dioxide using low-cost catalyst materials

Cold conversion of food waste into renewable energy and fertilizer

Nagoya University researchers break down plastic waste

STELLAR CHEMISTRY
Oil production in the Gulf of Mexico shows resilience

Gas-rich Russia next to ponder impact of Qatari dust-up

Some bearish trends setting in for crude oil

Supply and demand factors leave U.S. gas prices stable

STELLAR CHEMISTRY
World leaders vow to defend climate pact after Trump pullout

Climate science: Bad news gets worse

Cape Town cuts back to survive worst drought in 100 years

Climate: What is the Paris Agreement?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.