Energy News  
CARBON WORLDS
A room temperature field-effect transistor using graphene's electron spin
by Staff Writers
Gothenburg, Sweden (SPX) Jul 10, 2017


Schematic and coloured scanning electron microscope image of a fabricated graphene-molybdenum disulfide heterostructure spintronic device. Credit: Spin FET@Chalmers

Graphene Flagship researchers based at Chalmers University of Technology in Gothenburg, Sweden have published in Nature Communications a research paper showing a graphene-based spin field-effect transistor operating at room temperature.

Using the spin of the electrons in graphene and other layered material heterostructures the researchers have produced working devices as a step towards integrating spintronic logic and memory devices.

Current semiconductor logic devices within our computers use the flow and control of electronic charge for information processing. Spintronic memory devices use the intrinsic properties of electron spin to store information. For future devices, researchers are searching for ways to integrate both information processing and storage in one device unit.

"Graphene is an excellent medium for spin transport at room temperature, due to its low atomic mass. However, an unsolved challenge was to control the spin current at ambient temperature" explains Saroj Dash, group leader and Associate Professor at Chalmers University of Technology.

The Graphene Flagship researchers Andre Dankert and Saroj Dash have now shown that it is possible to electrically manipulate the spin properties of graphene in a controlled manner at room temperature.

This not only could open many new possibilities in spin logic operations but also integration with magnetic memory elements in a single device. With further developments, if one could produce a spin current without charge flow, this will require far less power and lead to more versatile devices. This is especially important as we move more and more toward hand held mobile computing.

"Controlling the flow of spin currents in a transistor-like manner is a decade old dream and towards all-electrical spin logic applications." says the lead author Andre Dankert from Chalmers University of Technology, "Researchers were working for almost ten years to understand the spin transport properties of various layered materials and how they can be tuned to achieve this goal. Our work is an important milestone in the field of spintronics."

Graphene has been shown to transport spin over long distances by several Flagship Groups. Combining graphene with another layered material where spin lasts much less time can produce a spin field-effect transistor like device.

Talking about creating spintronic devices using a heterostructure is Saroj Dash, "By combining graphene, where spin lasts for nano seconds with molybdenum disulfide where spin only lasts for picoseconds you can control where the spin can go by using a gate voltage - essentially you can create a spin switch. Importantly, we show in this research a particular materials mix which enables this spin-switch to work at room temperature."

Saroj Dash also added "We have been working on graphene spintronics for a number of years and we joined the Graphene Flagship because our goals are aligned with that of the Flagship spintronics work package - to investigate room temperature graphene spintronics devices, joining together theoretical and experiment research.

The collaborative nature of the Graphene Flagship community, with its focus on face to face meetings has lead to many fruitful discussions within our spintronics field. This collaborative approach also led to a great relationship with our commercial partner Graphenea, who has worked with us to provide the graphene sample we needed."

Speaking about the next steps in his research Andre Dankert said, "Now we know the crucial parameters of our device structure, we can optimise it to increase the effective gain and transistor action."

Many layered materials are promising for spintronics. In addition to exploring the interesting properties of these individual crystals, it is intriguing to reveal the potential of their heterostructures. The bigger goal is to create novel spin phenomena in layered materials based devices by stacking different layers with complementary properties, Saroj Dash explained.

Bart van Wees, leader of the spintronics work package adds, "The future challenge will be to explore and use the new spintronic functionalities which are made possible by the new van der Waals heterostructures. The authors already made an important step here."

Professor Andrea Ferrari, Chair of the Management Panel and Science and Technology Officer of the Graphene Flagship added: "spintronics has been one of the fundamental work packages since the start of the Flagship. It was always seen as a long term investment. It is exciting to see that so much progress has been made towards devices"

Research paper

CARBON WORLDS
Black carbon varies, but stubbornly persists, in snow and ice around the world
Boulder CO (SPX) Jul 03, 2017
A new University of Colorado Boulder study comparing dissolved black carbon deposition on ice and snow in ecosystems around the world (including Antarctica, the Arctic, and alpine regions of the Himalayas, Rockies, Andes, and Alps) shows that while concentrations vary widely, significant amounts can persist in both pristine and non-pristine areas of snow. Black carbon is the soot-like bypr ... read more

Related Links
Graphene Flagship
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Google's 'moonshot' factory spins off geothermal unit

Fighting global warming and climate change requires a broad energy portfolio

Low-carbon trajectory is the only option, European leaders say

Divestment streak continues for British energy company Centrica

CARBON WORLDS
First battery-free cellphone makes calls by harvesting ambient power

PPPL researchers demonstrate first hot plasma edge in a fusion facility

Conductive electrodes are key to fast-charging batteries

Iron secrets behind superconductors unlocked

CARBON WORLDS
Owls' wings could hold the key to beating wind turbine noise

Algeria seen as African leader for renewable energy

Thrive Renewables delivers mezzanine funded wind farms in Scotland

It's a breeze: How to harness the power of the wind

CARBON WORLDS
Meniscus-assisted technique produces high efficiency perovskite PV films

There Will Always be Sun on this Horizon

SolarEdge Launching First PV Inverter-Integrated Electric Vehicle Charger

Investors Generate 174,000,000 kWh of Renewable Electricity

CARBON WORLDS
France could close a third of nuclear reactors: minister

Mitsubishi, Assystem take stakes in France's nuclear reactors firm

Britain must leave EU nuclear body: Verhofstadt

Sixth MOX nuclear shipment leaves France for Japan

CARBON WORLDS
Cutting the cost of ethanol, other biofuels and gasoline

Solving a sweet problem for renewable biofuels and chemicals

A whole-genome sequenced rice mutant resource for the study of biofuel feedstocks

New biofuel technology significantly cuts production time

CARBON WORLDS
Oklahoma says economic recovery under oil price pressure

Energy jobs on the decline, but not production, IEA finds

Norway's oil production higher year-over-year

More oil discovered off the coast of Senegal

CARBON WORLDS
Scientists upgrade database tracking global temperatures across millennia

Two significant warming intervals in southern China since 1850

Bloomberg outlines plan to quantify US climate efforts

G20: Compromise on climate change, but at what cost?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.