Energy News  
STELLAR CHEMISTRY
A new spin to solving mystery of stellar companions
by Staff Writers
Maunakea HI (SPX) Dec 18, 2017


Image of the planetary-mass companion GSC 6214-210 b (bottom) and its host star (top).

Taking a picture of an exoplanet--a planet in a solar system beyond our sun - is no easy task. The light of a planet's parent star far outshines the light from the planet itself, making the planet difficult to see.

While taking a picture of a small rocky planet like Earth is still not feasible, researchers have made strides by snapping images of about 20 giant planet-like bodies.

These objects, known as planetary-mass companions, are more massive than Jupiter, orbit far from the glare of their stars, and are young enough to still glow with heat from their formation - all traits that make them easier to photograph.

But one big question remains: Are these planetary-mass companions actually planets, or are they instead small "failed" stars called brown dwarfs?

Brown dwarfs form like stars do--out of collapsing clouds of gas - but they lack the mass to ignite and shine with starlight. They can be found floating on the their own in space, or they can be found orbiting with other brown dwarfs or stars. The smallest brown dwarfs are similar in size to Jupiter and would look just like a planet when orbiting a star.

Using the W. M. Keck Observatory on Maunakea, Hawaii, researchers at Caltech have taken a new approach to the mystery: they have measured the spin rates of three of the photographed planetary-mass companions and compared them to spin rates for small brown dwarfs. The results offer a new set of clues that hint at how the companions may have formed.

"These companions with their high masses and wide separations could have formed either as planets or brown dwarfs," says graduate student Marta Bryan (MS '14), lead author of a new study describing the findings in the journal Nature Astronomy. "In this study, we wanted to shed light on their origins."

"These new spin measurements suggest that if these bodies are massive planets located far away from their stars, they have properties that are very similar to those of the smallest brown dwarfs," says Heather Knutson, professor of planetary science at Caltech and a co-author of the paper.

The astronomers measured the spin rate, or the length of a day, of three planetary-mass companions known as ROXs 42B b, GSC 6214-210 b, and VHS 1256-1257 b. They used an instrument at Keck Observatory called the Near Infrared Spectrograph (NIRSpec) to dissect the light coming from the companions.

As the objects spin on their axes, light from the side that is turning toward us shifts to shorter, bluer wavelengths, while light from the receding side shifts to longer, redder wavelengths. The degree of this shifting indicates the speed of a rotating body.

The results showed that the three companions' spin rates ranged between six to 14 kilometers per second, similar to rotation rates of our solar system's gas giant planets Saturn and Jupiter.

For the study, the researchers also included the two planetary-mass companions for which spin rates had already been measured. One, b Pictoris b, has a rotation rate of 25 kilometers per second--the fastest rotation rate of any planetary-mass body measured so far.

The researchers compared the spin rates for the five companions to those measured previously for small free-floating brown dwarfs. The ranges of rotation rates for the two populations were indistinguishable. In other words, the companions are whirling about their own axes at about the same speeds as their free-floating brown-dwarf counterparts.

The results suggest two possibilities. One is that the planetary-mass companions are actually brown dwarfs. The second possibility is that the companions looked at in this study are planets that formed, just as planets do, out of disks of material swirling around their stars, but for reasons not yet understood, the objects ended up with spin rates similar to those of brown dwarfs.

Some researchers think that both newly forming planets and brown dwarfs are encircled by miniature gas disks that might be helping to slow their spin rates. In other words, similar physical processes may leave planets and brown dwarfs with similar spin rates.

"It's a question of nature versus nurture," says Knutson. "Were the planetary companions born like brown dwarfs, or did they just end up behaving like them with similar spins?"

The team also says that the companions are spinning more slowly than expected. Growing planets tend to be spun up by the material they pull in from a surrounding gas disk, in the same way that spinning ice skaters increase their speed, or angular momentum, when they pull their arms in. The relatively slow rotation rates observed for these objects indicate that they were able to effectively put the brakes on this spin-up process, perhaps by transferring some of this angular momentum back to encircling gas disks. The researchers are planning future studies of spin rates to further investigate the matter.

"Spin rates of planetary-mass bodies outside our solar system have not been fully explored," says Bryan. "We are just now beginning to use this as a tool for understanding formation histories of planetary-mass objects."

STELLAR CHEMISTRY
Neutron stars on the brink of collapse
Heidelberg, Germany (SPX) Dec 14, 2017
When a very massive star dies, its core contracts. In a supernova explosion, the star's outer layers are expelled, leaving behind an ultra-compact neutron star. For the first time, the LIGO and Virgo Observatories have recently been able to observe the merger of two neutron stars and measure the mass of the merging stars. Together, the neutron stars had a mass of 2.74 solar masses. Based o ... read more

Related Links
Keck Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
US void hard to miss at Paris climate summit

To save climate, stop investing in fossil fuels: economists

Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

STELLAR CHEMISTRY
New test procedure for developing quick-charging lithium-ion batteries

Scientists create stretchable battery made entirely out of fabric

Nuclear fusion project faces delay over US budget cuts: director

Army researchers seek better batteries

STELLAR CHEMISTRY
Construction to start on $160 million Kennedy Energy Park in North Queensland

Oil-rich Alberta sees momentum for wind energy

U.S. wind turbines getting taller and more efficient

New wind farm in service off the British coast

STELLAR CHEMISTRY
Guanidinium stabilizes perovskite solar cells at 19 percent efficiency

India faces painful move to cleaner energy

Solar power advances possible with new 'double-glazing' device

U.S. solar power group says it sees headwinds ahead

STELLAR CHEMISTRY
Defects found at China nuclear reactor project

Mainz physicists propose a new method for monitoring nuclear waste

Australian waste treatment technology plays major role in management of radioactive waste

Bruce Power Contracts Major Industry Suppliers for Steam Generator Replacement Project

STELLAR CHEMISTRY
Bristol scientists turn beer into fuel

NREL develops novel method to produce renewable acrylonitrile

Algae could feed and fuel planet with aid of new high-tech tool

NREL research finds a sweet spot for engineering better cellulose-degrading enzymes

STELLAR CHEMISTRY
North Sea business out nearly $30M a day on Forties pipeline outage

Florida senator moves ahead of White House on offshore drilling plans

European gas flows back after fatal Austrian accident

Contracts awarded for export terminal overhaul

STELLAR CHEMISTRY
'We're losing the battle', Macron tells Paris climate talks

Investors turn back on fossil fuels at Paris climate summit

Leaders join France's Macron to discuss climate cash crunch

Researchers pin down one source of a potent greenhouse gas









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.