A new material for the battery of the future, made in UCLouvain by Staff Writers Louvain, Belgium (SPX) Jul 22, 2019
Renewable sources of energy such as wind or photovoltaic are intermittent. The production peaks do not necessarily follow the demand peaks. Storing green energy is therefore essential to moving away from fossil fuels. The energy produced by photovoltaic cells is stored during the day and by wind-power when the wind blows to be used later on when needed. What do we have now? The Li-ion technology is currently the best performing technology for energy storage based on batteries. Li-ion batteries are used in small electronics (smartphones, laptops) and are the best options for electric cars. Their drawback? Li-ion batteries can catch fire, for instance because of a manufacturing problem. This is due in part to the presence of liquid organic electrolytes in current batteries. These organic electrolytes are necessary to the battery but highly flammable. The solution? Switching from a liquid flammable electrolyte to a solid (i.e., moving to " all-solid-state " batteries). This is a very difficult step as lithium ions in solids are less mobile than in liquids. This lower mobility limits the battery performances in terms of charge and discharge rate.
The discovery made by UCLouvain The researchers observed in LTPS the highest lithium diffusion coefficient (a direct measure of lithium mobility) ever measured in a solid. LTPS shows a diffusion coefficient much higher than known materials. The results are published in the prestigious scientific journal Chem from Cell Press. The discovery? This lithium mobility comes directly from the unique crystal structure (i.e., the arrangement of atoms) of LTPS. The understanding of this mechanism opens new perspectives in the field of lithium ion conductors and, beyond LTPS, opens an avenue towards the search for new materials with similar diffusion mechanisms. What's next? The researchers need for further study and improve the material to enable its future commercialization. This discovery is nevertheless an important step in the understanding of materials with extremely high lithium ion mobility which are ultimately needed for the developing the "all-solid-state" batteries of the future. These materials including LTPS might end up being used in many the technologies that we use in our daily lives from cars to smartphones.
Highview Power Unveils CRYOBattery, World's First Giga-Scale Cryogenic Battery London, UK (SPX) Jul 01, 2019 Highview Power, the global leader in long-duration energy storage solutions, is pleased to announce that it has developed a modular cryogenic energy storage system, the CRYOBattery, that is scalable up to multiple gigawatts of energy storage and can be located anywhere. This technology reaches a new benchmark for a levelized cost of storage (LCOS) of $140/MWh for a 10-hour, 200 MW/2 GWh system. Highview Power's cryogenic energy storage system is equivalent in performance to, and could potentially ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |