Subscribe free to our newsletters via your
. Energy News .




TECH SPACE
A new breakthrough in thermoelectric materials
by Staff Writers
Seoul, South Koera (SPX) Apr 08, 2015


This schematic illustration shows the generation of dislocation arrays during the liquid-phase compaction process. The Te liquid (red) between the Bi0.5Sb1.5Te3 grains flows out during the compacting process and facilitates the formation of dislocation arrays embedded in low-energy grain boundaries. Image courtesy Institute for Basic Science. For a larger version of this image please go here.

French physicist Jean Charles Athanase Peltier discovered a key concept necessary for thermoelectric (TE) temperature control in 1834. His findings were so significant, TE devices are now commonly referred to Peltier devices. Since his work, there have been steady advancements in materials and design. Despite the technological sophistication Peltier devices, they are still less energy efficient than traditional compressor/evaporation cooling.

In the 1960's, Peltier devices were primarily made from Bismuth-Telluride (Bi2Te3) or Antimony-Telluride (Sb2Te3) alloys and had a peak efficiency (zT) of 1.1, meaning the electricity going in was only slightly less than the heat coming out. Since the 1960's there have been incremental advancements in alloy technology used in Peltier devices.

In 2014, researchers in South Korea at IBS Center for Integrated Nanostructure Physics along with Samsung Advanced Institute of Technology, the Department of Nano Applied Engineering at Kangwon National University, the Department of Energy Science at Sungkyunkwan University, and Materials Science department at California Institute of Technology California, USA have formulated a new method for creating a novel and much more efficient TE alloy.

TE alloys are special because the metals have an incredibly high melting point. Instead of melting the metals to fuse them, they are combined through a process called sintering which uses heat and/or pressure to join the small, metallic granules.

The joint team, including IBS researchers, used a process called liquid-flow assisted sintering which combined all three antimony, bismuth and telluride granules into one alloy (Bi0.5Sb1.5Te3). Additional melted tellurium was used as the liquid between the Bi0.5Sb1.5Te3 granules to help fuse them into a solid alloy, and excess Te is expelled in the process.

By creating the alloy this way, the joints between the fused grains, also known as the grain boundaries, took on a special property. Traditionally sintered Bi0.5Sb1.5Te3 have thick, coarse joints which have led to a decrease in both thermal and electrical conductivity.

The new liquid-phase sintering creates grain boundaries which are organized and aligned in seams called dislocation arrays. These dislocation arrays greatly reduce their thermal conduction, leading to an enhancement of their thermoelectric conversion efficiency.

In tests, the efficiency (zT) reached 2.01 at 320 K within the range of 1.86 +/-0.15 at 320 K (46.85 C) for 30 samples, nearly doubling the industry standard. When the melt spun Bi0.5Sb1.5Te3 alloy is used in a Peltier cooler, the results are also significant. The new material was able achieve a temperature change of 81 K at 300 K (26.85 C).

The applications for such a material are abundant. As new fabrication techniques are developed, Peltier cooling devices may be used in place of traditional compression refrigeration systems.

More importantly, as electrical vehicles and personal electronic devices become more ubiquitous in our daily lives, it is becoming increasingly necessary to have more efficient systems for localized electrical power generation and effective cooling mechanisms. This new thermoelectric alloy paves the way for the future of modern TE devices.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Institute for Basic Science
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Femto-snapshots of reaction kinetics
Berlin, Germany (SPX) Apr 02, 2015
Using quantum chemical calculations, they were successful in interpreting the data and obtaining a detailed picture of the intermediates and reaction kinetics. The work, which has now been published in Nature, could prove helpful in developing novel catalysts for chemical storage of solar energy. All plants do it: they store solar energy in the form of carbohydrates with the help of a meta ... read more


TECH SPACE
Japan to pledge 20% greenhouse gas cut: report

Residential research poor foundation for sustainable development

Latin America divided between oil and green energy

New Zealand breaks renewable energy record

TECH SPACE
Using magnetic fields to understand high-temperature superconductivity

Bacteria can use magnetic particles to create a 'natural battery'

Squeeze to remove heat with elastocaloric materials

New technology converts packing peanuts to battery components

TECH SPACE
Cornell deploys dual ZephIR lidars for more accurate turbulence study

U.S. to fund bigger wind turbine blades

Gamesa and AREVA create the joint-venture Adwen

Time ripe for Atlantic wind, advocates say

TECH SPACE
Solar Power Network and KLD completes Shizuoka roof top farm

Time for political leadership to resolve Renewable Energy Target crisis

Local organization announces second solar installation project in India

GE and Pacifico Energy Partner on a Third Solar Transaction in Japan

TECH SPACE
Delivery of Vessel Head to the Tihange 3 Nuclear Reactor in Belgium

Sri Lanka, Pakistan sign nuclear agreement

Texas Rare Earth Resources and AREVA Sign Uranium Deal

New Commercial Success for AREVA's Safety Alliance Program

TECH SPACE
Corn husks a promising source of renewable fuel: study

Biofuel crops replace grasslands nationwide

Algae from wastewater solves 2 problems

Researchers use wastewater to grow algae for biofuels

TECH SPACE
Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

TECH SPACE
Climate change, plant roots may accelerate carbon loss from soils

Taiwan launches water rationing to fight drought

Complex landscape has both vulnerabilities and resilience to change

Atmospheric energy escaped from the Tibetan Plateau




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.