Energy News  
SPACE MEDICINE
A little piece of Washington state blasted into space this week
by Staff Writers
Richland WA (SPX) Jul 17, 2022

A portion of the DynaMoS research team at Kennedy Space Center: (L-R) Kim Hixson, Janet Jansson, Yuliya Farris, Marcia Garcia

A tiny piece of rural Washington state-and some of its "inhabitants"- blasted off into space from Kennedy Space Center in Florida on Thursday, July 14.

The inhabitants are bacteria that live in the soil in Prosser, Wash. Scientists will study what the bacteria do in a microgravity environment to learn more about how soil microbial communities function in space. That's information scientists need to grow food either in space or on another celestial body.

The experiment, funded by NASA, is called DynaMoS, or Dynamics of Microbiomes in Space. The study is being conducted by researchers at the Department of Energy's Pacific Northwest National Laboratory.

The soil microbial community headed for the International Space Station is composed of eight species of bacteria that PNNL scientists isolated from a scientific field site in Prosser that is run by Washington State University. The microbes will be among the payload of NASA's SpaceX CRS-25 resupply mission.

Crops in space?
PNNL scientists will study how the microbes behave in space compared to how they behave on Earth. Why do some species flourish under certain conditions and struggle under others? Who needs which partners to thrive, and who might be expendable? Will microbes work in space like they do on Earth, to help us grow food and cycle carbon and other nutrients?

"We still have a lot to learn about how microorganisms behave on Earth," said Janet Jansson, a chief scientist and laboratory fellow at PNNL and the leader of DynaMoS. "There are even more questions to address if we are to grow food in space, for instance on the lunar surface or for a long-lasting mission to Mars. How do microbes behave in microgravity, for instance?"

Jansson, Ryan McClure and other PNNL scientists have spent several years studying how communities of microorganisms behave in the soil on Earth.

Listen to PNNL's SciVIBE podcast, where Ryan McClure describes the mission.

"Plants need beneficial soil microbes to help them grow. Microbes can provide nutrients and protect plants from drought, from pathogens, and from other kinds of stress," said McClure. "Understanding how microbes interact as they do this is the first step for building communities of microbes that can support plant growth in places like the moon, Mars, or the space station."

At home, even in space
The experiment draws upon some of the fanciest technology available to study something as common as soil. Just one cup of soil typically contains thousands of different microbial species-far too many to understand at once. From its studies in Prosser, the PNNL team has evolved a naturally interacting community of eight species that will be used for the space mission.

The bacteria will grow in their home environment, soil collected from Prosser. A few days before launch, the scientists will inoculate the soil with the eight bacteria: Dyadobacter, Ensifer, Neorhizobium, Rhodococcus, Sinorhizobium, Sphingopyxis, Streptomyces, and Variovorax.

The soil will contain chitin, a common microbe chow found in soil worldwide. The ability to eat chitin, or eat byproducts given off by other species as they break down chitin, is key for the microbial community to survive.

"The native soil microbiome is very complex, with thousands of species and millions of interactions. So, we chose to start by focusing on eight species from a naturally evolved community to study," said McClure, who calls the grouping a "reduced-complexity community.

The experiment will include 104 test tubes containing the soil and chosen microbes. Half will be sent to the space station, and half will grow under similar conditions-except for gravity and atmosphere-in a laboratory at Kennedy Space Center in Florida.

Each tube will contain 20 grams of soil packed with chitin and hundreds of millions of each of the eight bacteria. The tubes will be sampled at four different times over 12 weeks. Then the space samples will be returned to Kennedy Space Center, and all the samples and microbes will be driven via refrigerated truck from Kennedy to PNNL for intensive analysis.

Back on terra firma
Scientists will measure the number of each species as well as their proteins, other molecular messengers known as transcripts, and byproducts called metabolites. Measurements will tell who is most abundant, who is rare, and more importantly what each is doing and how they're interacting. The measurements will be done at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility at PNNL.

"We need to understand who plays well with whom, who never wants to be with whom, and so on. It takes a village of microbes to create a thriving community and to enhance crop production. That's true for agricultural production anywhere, whether in space or on Earth," said Jansson, who is on a panel of biologists taking part in the Decadal Survey on Biological and Physical Sciences Research in Space 2023-2032.

Much of the groundwork for the soil mission has been established through a study of the soil microbiome by PNNL scientists and which has been funded by DOE.

Other experiments on board will look at wound healing, immune cells, biosensors, concrete and Earth's dust.


Related Links
Pacific Northwest National Laboratory
Space Medicine Technology and Systems


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SPACE MEDICINE
Artificial intelligence model finds potential drug molecules a thousand times faster
Boston MA (SPX) Jul 14, 2022
The entirety of the known universe is teeming with an infinite number of molecules. But what fraction of these molecules have potential drug-like traits that can be used to develop life-saving drug treatments? Millions? Billions? Trillions? The answer: novemdecillion, or 1060. This gargantuan number prolongs the drug development process for fast-spreading diseases like Covid-19 because it is far beyond what existing drug design models can compute. To put it into perspective, the Milky Way has about 100 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE MEDICINE
Debunking the myths that discourage public funding of clean energy

Biden to announce new action on climate in major speech

UK climate chief hints at resignation as Tory race heats up

Solar Energy - It's Time to Harness the Sun's Energy

SPACE MEDICINE
Fusion's newest ambassador at MIT

Sumitomo invests in TAE Technologies for Fusion Reactor development

PPPL scientists propose solution to a long-puzzling fusion problem

Longer lasting sodium-ion batteries on the horizon

SPACE MEDICINE
Modern wind turbines can more than compensate for decline in global wind resource

End-of-life plan needed for tens of thousands of wind turbine blades

Engineers develop cybersecurity tools to protect solar, wind power on the grid

1500 sensors for the rotor blades of the future

SPACE MEDICINE
Explained: Why perovskites could take solar cells to new heights

New world records: Perovskite-on-silicon-tandem solar cells

Netherlands seeks space for solar power

Solar cells printed on steel for buildings generate clean energy, researchers say

SPACE MEDICINE
UK approves major new nuclear plant

Russia shelling from Europe's largest nuclear plant: Ukraine agency

France to launch buy-out of power giant EDF

Better estimating the risk of coastal flooding for nuclear power plants

SPACE MEDICINE
MSU researchers create method for breaking down plant materials for earth-friendly energy

Solar-powered chemistry uses CO2 and H2O to make feedstock for fuels, chemicals

Technologies boost potential for carbon dioxide conversion to useful products

Study points to Armenian origins of ancient crop with aviation biofuel potential

SPACE MEDICINE
Oil dispute sharpens Baghdad-Kurd tensions amid deadlock

How Blue Condor will accelerate Airbus' first hydrogen-powered test flights

Saudi warns against 'unrealistic' policies to curb emissions

Cerulean Winds aims to make UK's oil and gas production cleanest in the world

SPACE MEDICINE
Nearly half of EU territory 'at risk' of drought

Climate change's fingerprints on ever hotter heatwaves

Glacial microclimates mimic climate change

Biden vows climate action as heat waves slam US, Europe









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.