Energy News  
CARBON WORLDS
A human enzyme can biodegrade graphene
by Staff Writers
London, UK (SPX) Aug 24, 2018

A human lung enzyme can biodegrade graphene.

Myeloperoxidase - an enzyme naturally found in our lungs - can biodegrade pristine graphene, according to the latest discovery of Graphene Flagship partners in CNRS, University of Strasbourg (France), Karolinska Institute (Sweden) and University of Castilla-La Mancha (Spain).

Among other projects, the Graphene Flagship designs flexible biomedical electronic devices that will interface with the human body. Such applications require graphene to be biodegradable, so it can be expelled from the body. To test how graphene behaves within the body, researchers analysed how it was broken down with the addition of a common human enzyme - myeloperoxidase or MPO.

To test how graphene behaves within the body, researchers conducted several tests to analyse how graphene was broken down with the addition of a common human enzyme - myeloperoxidase or MPO. Found in the human lungs, MPO is a peroxide enzyme released by neutrophils, a type of cells responsible for the elimination of any foreign bodies. If a foreign body or bacteria is detected, neutrophils surround it and secrete MPO, thereby destroying the threat. Previous work by Graphene Flagship partners found that MPO could successfully biodegrade graphene oxide.

However, the structure of non-functionalized graphene was thought to be more resistant to degradation. To test this, the team looked at the effects of MPO ex vivo on two graphene forms; single- and few-layer.

Alberto Bianco, researcher at Graphene Flagship Partner CNRS, explains: "We used two forms of graphene, single- and few-layer, prepared by two different methods in water. They were then taken and put in contact with myeloperoxidase in the presence of hydrogen peroxide. This peroxidase was able to degrade and oxidise them. This was really unexpected, because we thought that non-functionalized graphene was more resistant than graphene oxide."

Rajendra Kurapati, first author on the study and researcher at Graphene Flagship Partner CNRS, remarks how "the results emphasize that highly dispersible graphene could be degraded in the body by the action of neutrophils. This would open the new avenue for developing graphene-based materials."

With successful ex-vivo testing, in-vivo testing is the next stage. Bengt Fadeel, professor at Graphene Flagship Partner Karolinska Institute believes that "understanding whether graphene is biodegradable or not is important for biomedical and other applications of this material. The fact that cells of the immune system are capable of handling graphene is very promising."

Prof. Maurizio Prato, the Graphene Flagship leader for its Health and Environment Work Package said that "the enzymatic degradation of graphene is a very important topic, because in principle, graphene dispersed in the atmosphere could produce some harm. Instead, if there are microorganisms able to degrade graphene and related materials, the persistence of these materials in our environment will be strongly decreased. These types of studies are needed."

"What is also needed is to investigate the nature of degradation products," adds Prato. "Once graphene is digested by enzymes, it could produce harmful derivatives. We need to know the structure of these derivatives and study their impact on health and environment," he concludes.

Prof. Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and chair of its management panel added: "The report of a successful avenue for graphene biodegradation is a very important step forward to ensure the safe use of this material in applications. The Graphene Flagship has put the investigation of the health and environment effects of graphene at the centre of its programme since the start. These results strengthen our innovation and technology roadmap."

Research paper


Related Links
Graphene Flagship
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Scientists find way to make mineral which can remove CO2 from atmosphere
Boston MA (SPX) Aug 17, 2018
Scientists have found a rapid way of producing magnesite, a mineral which stores carbon dioxide. If this can be developed to an industrial scale, it opens the door to removing CO2 from the atmosphere for long-term storage, thus countering the global warming effect of atmospheric CO2. This work is presented at the Goldschmidt conference in Boston. Scientists are already working to slow global warming by removing carbon dioxide from the atmosphere, but there are serious practical and economic limits ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Electricity crisis leaves Iraqis gasping for cool air

Energy-intensive Bitcoin transactions pose a growing environmental threat

Germany thwarts China by taking stake in 50Hertz power firm

Global quadrupling of cooling appliances to 14 billion by 2050

CARBON WORLDS
A paper battery powered by bacteria

Scientists tame damaging plasma instabilities in fusion facilities

These lithium-ion batteries can't catch fire because they harden on impact

Doubling performance with lithium metal that doesn't catch fire

CARBON WORLDS
Denmark gets nod for renewable energy support scheme

Searching for wind for the future

Clock starts for Germany's next wind farm

ENGIE: Wind energy footprint firmed up in Norway

CARBON WORLDS
Constellation begins construction on 10MW solar array in Maryland

Sanjeev Gupta to build 280MW solar farm in South Australia

Brown selects Freedom Solar Power to design and install rooftop solar array

Wartsila to help ensure reliable power supply in challenging Hawaii conditions

CARBON WORLDS
Framatome supports its customers with a solution to increase plant efficiency

Extreme makeover: Fukushima nuclear plant tries image overhaul

Framatome becomes main distributor of Chesterton valve packing and seals for the nuclear energy industry

SUSI submarine robot enables successful visual Inspection at Asco Nuclear Power Plant

CARBON WORLDS
Less drain on freshwater supplies with seawater fuel discovery

'Trash is gold' as Benin community turns waste into biogas

Ethiopia opens plant to turn waste into energy

Trees and climate change: Faster growth, lighter wood

CARBON WORLDS
Supply pressures add up to rally in crude oil prices

Venezuela denies Colombia's claims of armed forces incursion

Scotland sees North Sea revenue boost

Australia's Santos a major gas player with acquisition

CARBON WORLDS
Next half-decade will be hotter than expected, climate scientists predict

Australia ramps up aid to farmers as drought bites

Leadership fears see Australia PM back away from climate targets

Britain's dry summer reveals ancient sites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.