Subscribe free to our newsletters via your
. Energy News .




TECH SPACE
A Stopwatch for Electron Flashes
by Staff Writers
Munich, Germany (SPX) Dec 14, 2013


Photo: Thorsten Naeser.

Physicists at LMU Munich and the Max-Planck-Institute of Quantum Optics measure the duration of energetic electron pulses using laser fields.

A stopwatch made of light can determine the duration of extremely brief electron flashes. Teams based in the Laboratory for Attosecond Physics (LAP) at LMU and at the Max Planck Institute of Quantum Optics have, for the first time, succeeded in measuring the lengths of ultrashort bursts of highly energetic electrons using the electric fields of laser light.

Such electron pulses, which behave like ultrashort matter waves, provide time-resolved recordings of processes taking place in molecules and atoms, enabling elementary particles to be "filmed" in four dimensions. The new stopwatch for electrons now permits even more precise investigations of the motions of electrons and atoms on nature's smallest scales.

A temporal resolution of 24 frames per second is sufficient for a succession of still images to be perceived as smooth motion by the human eye. Recording the motions of atoms and charges within matter, which occur on attosecond scales, requires the acquisition of images at a trillion times that rate. The use of electron pulses offers a way to capture such ultrafast processes.

Bunches of electrons can be kicked out of a metal surface using laser light. Each electron pulse lasts for a few femtoseconds (a femtosecond is 1000 attoseconds; an attosecond is a billionth of a billionth of a second) and can deliver an almost instantaneous shot of processes within atoms.

However, exactly how long such pulses last has been difficult to determine. Now the LAP team has developed a system for the precise measurement of the duration of energetic (25 keV) electron pulses. The researchers direct the electron pulses at a thin foil of aluminum. There, they interact with a laser pulse which impinges on the foil perpendicularly to the electrons.

Under the influence of the laser's electric field, the electrons either gain or lose some energy before passing straight through the foil to a detector. Whether electrons pick up or lose energy during the encounter depends on the precise timepoint at which they interact with the rapidly oscillating electromagnetic laser field.

From the energy spectrum at the electron detector, the scientists can deduce the duration of the original electron pulse prior to its interaction with the laser field.

In contrast to the photons that make up laser light, electrons can penetrate deep into the inner constituents of matter. Hence, they not only measure the chronological sequence of events, but also probe the spatial dispositions of the atoms during a reaction. The investigation of matter with extremely brief electron pulses is called "ultrafast electron diffraction". With this technique, one can determine the positions and movements of atoms and charges in both space and time ? i.e. in four dimensions.

It is now possible to produce electron pulses that last for several hundreds of femtoseconds but, in principle, even attosecond electron flashes can be generated for electron diffraction. And when they eventually become available, these still shorter electron bunches can also be measured with the new technique. With the new stopwatch made of light, that novel regime no longer seems so far away. (Nature Photonics, 2013)

.


Related Links
Laboratory for Attosecond Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Intense 2-color double X-ray laser pulses: a powerful tool to study ultrafast processes
Tokyo, Japan (SPX) Dec 12, 2013
A team working at the SACLA X-ray Free-Electron Laser (XFEL) in Japan has succeeded in generating ultra-bright, two-color X-ray laser pulses, for the first time in the hard X-ray region. These light pulses with different wavelengths, whose time separation can be adjusted with attosecond accuracy, are very powerful tools to investigate the structure of matter and the dynamics of ultrafast physica ... read more


TECH SPACE
Ukraine's Two New Energy Deals

Keeping the lights on

Global energy demand to increase 35 percent: ExxonMobil

Who Is Keeping the Lights on in California?

TECH SPACE
Can We Turn Unwanted Carbon Dioxide Into Electricity

Deep Carbon Observatory scientists discover quick recipe for producing hydrogen

Negative resistivity leads to positive resistance in the presence of a magnetic field

Lockheed Martin Manufacturing Tanks to Store and Transport Liquefied Natural Gas

TECH SPACE
Wind energy: TUV Rheinland certifies PowerWind wind turbines

Renewable Energy Infrastructure Fund acquires 16 MW wind power asset from O2

Morgan Advanced Materials Delivers Superior Insulation Solution To Wind Farm

Ethiopia spearheads green energy in sub-Saharan Africa

TECH SPACE
GE Energy Financial Services Progresses In Solar

Concentrated Photovoltaic Solar Installations Set to Boom in the Coming Years

Greggs proves that solar energy generation is far from a half-baked plan

Quantum waves at the heart of organic solar cells

TECH SPACE
Ratepayers Could Save $1.7 Billion If Aging Nuclear Plant At Hanford, Washington Is Closed

US Risks Losing Critical Clean Electricity if Nuclear Power Plants Keep Closing at Steady Pace

US takes last shipment of Russian uranium

Company says no danger after fire at US nuclear plant

TECH SPACE
Ground broken on $6 million Hungarian farm biogas plant

Team reports on US trials of bioenergy grasses

Companies could make the switch to wood power

Turning waste into power with bacteria and loofahs

TECH SPACE
China deploys 'Jade Rabbit' rover on moon

The Dragon Has Landed

Chinaese moon rover and lander photograph each other

China's Jade Rabbit lunar rover sends first photos from moon

TECH SPACE
Geoengineering approaches to reduce climate change unlikely to succeed

New long-lived greenhouse gas discovered by University of Toronto chemistry team

French carbon crook on run after bracelet fails

Rapid climate changes, but with a 120 year time lag




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement