Energy News  
A Sea Of Complexity

Illustration of a Plesiosaurs dinosaur. Copyright: Doug Henderson.
by Staff Writers
Chicago Il (SPX) Nov 27, 2006
The earth experienced its biggest mass extinction about 250 million years ago, an event that wiped out an estimated 95% of marine species and 70% of land species. New research shows that this mass extinction did more than eliminate species: it fundamentally changed the basic ecology of the world's oceans.

Ecologically simple marine communities were largely displaced by complex communities. Furthermore, this apparently abrupt shift set a new pattern that has continued ever since. It reflects the current dominance of higher-metabolism, mobile organisms (such as snails, clams and crabs) that actually go out and find their own food and the decreased diversity of older groups of low-metabolism, stationary organisms (such as lamp shells and sea lilies) that filter nutrients from the water.

So says research published in Science on November 24, 2006. An accompanying article suggests that this striking change escaped detection until now because previous research relied on single numbers--such as the number of species alive at one particular time or the distribution of species in a local community--to track the diversity of marine life. In the new research, however, scientists examined the relative abundance of marine life forms in communities over the past 540 million years.

One reason they were able to do this is because they tapped the new Paleobiology Database, a huge repository of fossil occurrence data. The result is the first broad objective measurement of changes in the complexity of marine ecology over the Phanerozoic.

"We were able to combine a huge data set with new quantitative analyses," says Peter J. Wagner, Associate Curator of Fossil Invertebrates at The Field Museum and lead author of the study. "We think these are the first analyses of this type at this large scale. They show that the end-Permian mass extinction permanently altered not just taxonomic diversity but also the prevailing marine ecosystem structure."

Specifically, the data and analyses concern models of relative abundance found in fossil communities throughout the Phanerozoic. The ecological implications are striking. Simple marine ecosystems suggest that bottom-dwelling organisms partitioned their resources similarly. Complex marine ecosystems suggest that interactions among different species, as well as a greater variety of ways of life, affected abundance distributions. Prior to the end-Permian mass extinction, both types of marine ecosystems (complex and simple) were equally common. After the mass extinction, however, the complex communities outnumbered the simple communities nearly 3:1.

The other authors are Scott Lidgard, Associate Curator of Fossil Invertebrates at The Field Museum, and Matthew A. Kosnik, from the School of Marine and Tropical Biology at the James Cook University in Townsville, Queensland, Australia.

"Tracing how marine communities became more complex over hundreds of millions of years is important because it shows us that there was not an inexorable trend towards modern ecosystems," Wagner said. "If not for this one enormous extinction event at the end of the Permian, then marine ecosystems today might still be like they were 250 million years ago."

These results also might provide a wake-up call, Wagner added: "Studies by modern marine ecologists suggest that humans are reducing certain marine ecosystems to something reminiscent of 550 million years ago, prior to the explosion of animal diversity. The asteroid that wiped out the dinosaurs couldn't manage that."

Lidgard added, "When Pete walked into my office with his preliminary results, I simply couldn't believe them. Paleontologists had long recognized that ecosystems had become more complex, from the origin of single-celled bacteria to the present day. But we had little idea of just how profoundly this one mass extinction--but not the others like it--changed the marine world."

Community
Email This Article
Comment On This Article

Related Links
Field Museum
Water, Water Everywhere and Not A Drop To Drink...
Water News - Science, Technology and Politics



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Coral Reefs Are Increasingly Vulnerable To Angry Oceans
Santa Barbara CA (SPX) Nov 23, 2006
Size and shape may predict the survival of corals around the world when the weather churns the oceans in the years to come, according to a new model that relies on engineering principles. The increasing violence of storms associated with global climate change, as well as future tsunamis, will have major effects on coral reefs, according to a paper published this week in the international scientific journal Nature.







  • Finance Minister Brown Backs Taxes On Air Travel And Gas Guzzlers
  • Russian Regulators Seek To Withdraw 140 Oil And Gas Licenses
  • EU To Cut Number Of Permits For Second Stage Of Carbon Trading
  • Brazilian Carbon Credits Foster Investment Boom

  • Japanese Company To Order Recycled Nuclear Fuel From France
  • Temelin Nuclear Reactor Reconnected To Czech Power Grid
  • Nigeria Approves Seven Accords On Nuclear Power Project
  • Indian Atomic Plants At Risk Of Terror Attack After US Deal

  • Researchers Gaze At Cloud Formations
  • France To Create Coal Tax, Tighten Pollution Measures
  • Phytoplankton Cloud Dance
  • Ocean Organisms May be Linked to Cloud Formation

  • Report Outlines Funding To Conserve Half Of Massachusetts's Land
  • Trees Reversing Skinhead Earth May Aid Global Climate
  • Danish Christmas Tree Shortage Threatens Prices Across Europe
  • Ancestor of Modern Trees Preserves Record Of Ancient Climate Change

  • Wheat Gene May Boost Foods' Nutrient Content
  • Scandal, Drought Slash Australian Wheat Exporter AWB Profit 68 Percent
  • EU Snags Deal On Deep Sea Fish Catches
  • Edible Food Wrap Kills Deadly E. Coli Bacteria

  • London Blazes Anti-Pollution Trail With Vehicle Congestion Charge
  • BMW To Launch First New Hydrogen-Powered Model
  • Portable Solar-Powered Tag Readers Could Improve Traffic Management
  • GM Sees China As Future Export Base For Emerging Markets

  • DLR And EUROCONTROL Create Joint Total Airport Management Concept
  • Aviation Industry Alarmed At New EU Emission Rules
  • Technologies Evaluated For The Future National Airspace System
  • Silent Aircraft Readies For Take-Off

  • Could NASA Get To Pluto Faster? Space Expert Says Yes - By Thinking Nuclear
  • NASA plans to send new robot to Jupiter
  • Los Alamos Hopes To Lead New Era Of Nuclear Space Tranportion With Jovian Mission
  • Boeing Selects Leader for Nuclear Space Systems Program

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement