Energy News  
STELLAR CHEMISTRY
A New Way to Explore Dark Matter
by Staff Writers
Hilo HI (SPX) Jan 12, 2016


Computer simulation of gas distribution (left) and stars (right) after the Milky Way is perturbed by the dwarf satellite. Download the entire animation here.

Ripples in gas at the outer disk of our galaxy have puzzled astronomers since they were first revealed by radio observations a decade ago. Now, astronomers believe they have found the culprit - a dwarf galaxy, containing dark, unseen material, which skimmed the outskirts of our galaxy a few hundred million years ago.

The research, led by Sukanya Chakrabarti of the Rochester Institute of Technology, presents the first plausible explanation for the galactic ripples. "It's a bit like throwing a stone into a pond and making ripples," said Chakrabarti at a conference at the 227th meeting of the American Astronomical Society in Kissimmee, Florida.

"Of course we aren't talking about a pond, but our galaxy, which is tens of thousands of light-years across, and made of stars and gas, but the result is the same - ripples!"

Chakrabarti adds that this work is part of a new discipline called galactoseismology: "This is really the first non-theoretical application of this field, where we can infer things about the unseen composition of galaxies from analyzing galaxy-quakes."

To reach their conclusion the research team studied a trio of stars, called Cepheid variables, which are part of the likely dwarf galaxy now estimated to lie about 300,000 light-years away from our galaxy in the direction of the constellation Norma.

"We have a pretty good idea of the distance to these stars because the intrinsic brightness of Cepheid variable stars depends on their period of pulsation, which we can measure," says Chakrabarti.

"But the stars' distances were already estimated before this work - what I wanted to know was how fast this speeding bullet was going when it passed by our galaxy - with that information we can begin to understand the dynamics, and ultimately how much unseen dark matter is there."

To do that, Chakrabarti and her team focused on three Cepheids in the tiny galaxy. Using spectroscopic observations obtained at the Gemini Observatory (as well as the Magellan Telescope, and the WiFeS spectrograph) the researchers found that the stars are all speeding away at similar velocities - about 450,000 mph (~200 kilometers/second).

"This really implicates these stars as being part of an organized, fast-moving system which we believe is a dwarf galaxy. It's also very likely that this dwarf satellite brushed our galaxy millions of years ago and left ripples in its wake," said Chakrabarti.

"This new, potentially powerful way to study how stars, gas and dust are distributed in galaxies is really quite exciting," said Chris Davis, program director at the U.S. National Science Foundation that funds roughly 65% of Gemini as part of its international partnership, as well as this research program.

"Known as galactoseismology, it can trace both visible and invisible materials, including the elusive dark matter. It's a great way to better understand how galaxies and neighboring satellite dwarf galaxies interact as well."

Gemini Observatory astronomer Rodolfo Angeloni oversaw the observations at the Gemini South telescope in Chile. He adds that Gemini South is uniquely well-equipped to make these types of observations.

"The combination of Gemini's silver-coated mirror and the versatility of the infrared spectrograph Flamingos-2 really made this work possible." However, he continues, "These were especially faint and remote targets - we really had to push the limits."

The team plans to continue this work by looking for more Cepheid variable stars in our galaxy's halo. "There could be a population of yet undiscovered Cepheid variables that formed from a gas-rich dwarf galaxy falling into our galaxy's halo," said Chakrabarti.

"With the capabilities of today's telescopes and instruments we should be able to sample enough of the Milky Way's halo to make reasonable estimates on dark matter content - one of the greatest mysteries in astronomy today!"

The international research team includes Rodolfo Angeloni, Ken Freeman, Leo Blitz, among others, and RIT research scientist Benjamin Sargent and Andrew Lipnicky, a graduate student in the astrophysical sciences and technology program.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Gemini Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Russian scientists to develop dark matter detection model
Novosibirsk (Sputnik) Jan 04, 2016
Russian scientists plan to develop a dark matter detection prototype within one to two years, the Siberian Branch of Russian Academy of Science's senior nuclear physics research official said Sunday. "We know that [dark matter] leaves almost no traces and our main task is to dramatically lower the detection threshold to a minimum, which is physically possible in principle. There is quite s ... read more


STELLAR CHEMISTRY
Global electricity production vulnerable to climate and water resource change

Improving electric motor efficiency via shape optimization

Cool roofs in China offer enhanced benefits during heat waves

US Christmas lights use more energy than entire countries

STELLAR CHEMISTRY
Scientists simulate starting up tokamaks without using solenoid

NREL research advances hydrogen production efforts

Desert sand from UAE efficiently stores thermal energy

Creation of Jupiter interior, a step towards room temp superconductivity

STELLAR CHEMISTRY
Scotland sees local benefits from renewables

Dutch vote 'setback' to green energy plan: Greenpeace

South Australian Government renews energy for change

Approval of South Australian Wind Farm

STELLAR CHEMISTRY
NREL and CSEM jointly set new efficiency record with dual-junction solar cell

Renewable energy for state renewable portfolio standards yielded sizable benefits

Visualizing atoms of perovskite crystals

Optimum band gap for hybrid silicon/perovskite tandem solar cell

STELLAR CHEMISTRY
Japan to send plutonium cache to US under nuclear deal: report

Graphene filter can clean nuclear wastewater

Belgian nuclear reactor shut down three days after restarting

Belgian nuclear reactor restarts after shutdown

STELLAR CHEMISTRY
NREL's Min Zhang keeps her 'hugs' happy, leading to biofuel breakthroughs

IU scientists create 'nano-reactor' for the production of hydrogen biofuel

EU probes UK aid to convert huge coal power plant to biomass

A metabolic pathway in cyanobacteria could yield better biofuels

STELLAR CHEMISTRY
China plans 20 launches in 2016

China's Belt and Road Initiative catches world's imagination: Inmarsat CEO

Robotic telescope built by China and Thailand put into operation

China launches HD earth observation satellite

STELLAR CHEMISTRY
Drought, heat slash grain crops: study

Earth's recent history key to predicting global temperatures

Russia 'warming 2.5 times quicker' than global average

Melting sea ice increases Arctic precipitation, complicates climate predictions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.