Subscribe free to our newsletters via your
. Energy News .




STELLAR CHEMISTRY
ALMA prenatal scan reveals embryonic monster star
by Staff Writers
Munich, Germany (SPX) Jul 18, 2013


Observations of the dark cloud SDC 335.579-0.292 using the Atacama Large Millimeter/submillimeter array (ALMA) have given astronomers the best view yet of a monster star in the process of forming. A stellar womb with over 500 times the mass than the Sun has been found and appears as the yellow blob near the centre of this picture. This is the largest ever seen in the Milky Way -- and it is still growing. The embryonic star within is hungrily feeding on the material that is racing inwards. It is expected to give birth to a very brilliant star with up to 100 times the mass of the Sun. This image combines data from ALMA and NASA's Spitzer Space Telescope. Credit: ALMA (ESO/NRAJ/NRAO)/NASA.

The most massive and brightest stars in the galaxy form within cool and dark clouds but the process remains not just shrouded in dust, but also in mystery [1]. An international team of astronomers has now used ALMA to perform a microwave prenatal scan to get a clearer look at the formation of one such monster star that is located around 11 000 light-years away, in a cloud known as the Spitzer Dark Cloud (SDC) 335.579-0.292.

There are two theories on the formation of the most massive stars. One suggests that the parental dark cloud fragments, creating several small cores that collapse on their own and eventually form stars. The other is more dramatic: the entire cloud begins to collapse inwards, with material racing towards the cloud's centre to form one or more massive behemoths there. A team led by Nicolas Peretto of CEA/AIM Paris-Saclay, France, and Cardiff University, UK, realised that ALMA was the perfect tool to help find out what was really happening.

SDC335.579-0.292 was first revealed as a dramatic environment of dark, dense filaments of gas and dust through observations with NASA's Spitzer Space Telescope and ESA's Herschel Space Observatory. Now the team has used the unique sensitivity of ALMA to look in detail at both the amount of dust and the motion of the gas moving around within the dark cloud - and they have found a true monster.

"The remarkable observations from ALMA allowed us to get the first really in-depth look at what was going on within this cloud," says Peretto. "We wanted to see how monster stars form and grow, and we certainly achieved our aim! One of the sources we have found is an absolute giant - the largest protostellar core ever spotted in the Milky Way."

This core - the womb of the embryonic star - has over 500 times the mass of our Sun swirling around within it [2]. And the ALMA observations show that much more material is still flowing inwards and increasing the mass still further. This material will eventually collapse to form a young star up to 100 times as massive as our home star - a very rare beast.

"Even though we already believed that the region was a good candidate for being a massive star-forming cloud, we were not expecting to find such a massive embryonic star at its centre," says Peretto. "This object is expected to form a star that is up to 100 times more massive than the Sun. Only about one in ten thousand of all the stars in the Milky Way reach that kind of mass!"

"Not only are these stars rare, but their birth is extremely rapid and their childhood is short, so finding such a massive object so early in its evolution is a spectacular result," adds team member Gary Fuller from the University of Manchester, UK.

Another team member, Ana Duarte Cabral from the Laboratoire d'Astrophysique de Bordeaux, France, emphasises that "the ALMA observations reveal the spectacular details of the motions of the filamentary network of dust and gas, and show that a huge amount of gas is flowing into a central compact region". This strongly supports the theory of global collapse for the formation of massive stars, rather than fragmentation.

These observations formed part of the Early Science phase of ALMA, and have made use of just a quarter of the full array of antennas. "We managed to get these very detailed observations using only a fraction of ALMA's ultimate potential," concludes Peretto. "ALMA will definitely revolutionise our knowledge of star formation, solving some current problems, and certainly raising new ones."

.


Related Links
ESO
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Stellar monsters do not collide -- no hope for a spectacular catastrophe
Warsaw, Poland (SPX) Jul 17, 2013
One might expect that collisions between the remains of monstrous stars, with masses reaching 200-300 times that of our Sun, would be among the most spectacular phenomena in the Universe. Perhaps they are, but we will unfortunately probably never have the chance to find out. Astrophysicists from the Astronomical Observatory of the Faculty of Physics at University of Warsaw have discovered that t ... read more


STELLAR CHEMISTRY
Free market is best way to combat climate change

Australia to scrap carbon tax for emissions trading

Australia to ditch pollution levy by 2014

DOE: climate change to affect energy

STELLAR CHEMISTRY
Israel's dilemma: Where to sell the east Med gas

Chile reports fracking 'milestone' in gas find

Imaging electron pairing in a simple magnetic superconductor

Japan mulls nationalising unclaimed islands: report

STELLAR CHEMISTRY
SOWITEC Mexico - strengthening its permitted project pipeline

Sky Harvest To Acquire Vertical Axis Wind Turbine Technology And Manufacturing Facilities

Wind Energy: Components Certification Helps Reduce Costs

Wind power does not strongly affect greater prairie chickens

STELLAR CHEMISTRY
Nautilus Solar Completes the First Project under the L.A. Clean Solar Program

SMA Compact MV Power Platform a Turnkey Solution for Utility-Scale PV Plants

ET Solar Supplies Solar Modules to Ormat in the US

Tecta Solar Completes Solar Photovoltaic Installation at Harford Community College

STELLAR CHEMISTRY
S.Africa, EU seal nuclear energy deal

Chernobyl at Sea? Russia Building Floating Nuclear Power Plants

Greenpeace activists held after French nuclear plant break-in

Japan's former premier sues PM Abe

STELLAR CHEMISTRY
Drought response identified in potential biofuel plant

Euro Parliament committee endorses cap on using crops for biofuels

Japan, China and South Korea account for 84 percent of the macroalgae patents

Bacteria from Salar de Uyuni in Bolivia conceal bioplastic

STELLAR CHEMISTRY
Medical quarantine over for Shenzhou-10 astronauts

China's astronauts ready for longer missions

Chinese probe reaches record height in space travel

China's space tracking ship Yuanwang-5 berths at Jakarta for replenishment

STELLAR CHEMISTRY
EU hails China's commitment to climate change

Climate change could mean business opportunities, Britain says

Identifying climate impact hotspots across sectors

Pakistan to miss out on climate change funding?




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement