Subscribe free to our newsletters via your
. Energy News .




IRON AND ICE
ALMA discovers comet factory
by Staff Writers
Munich, Germany (SPX) Jun 07, 2013


This artist's impression shows the dust trap in the system Oph-IRS 48. The dust trap provides a safe haven for the tiny rocks in the disc, allowing them to clump together and grow to sizes that allow them to survive on their own. Credit: ESO/L. Calcada.

Astronomers now know that planets around other stars are plentiful. But they do not fully understand how they form and there are many aspects of the formation of comets, planets and other rocky bodies that remain a mystery. However, new observations exploiting the power of ALMA are now answering one of the biggest questions: how do tiny grains of dust in the disc around a young star grow bigger and bigger - to eventually become rubble, and even boulders well beyond a metre in size?

Computer models suggest that dust grains grow when they collide and stick together. However, when these bigger grains collide again at high speed they are often smashed to pieces and sent back to square one. Even when this does not happen, the models show that the larger grains would quickly move inwards because of friction between the dust and gas and fall onto their parent star, leaving no chance that they could grow even further.

Somehow the dust needs a safe haven where the particles can continue growing until they are big enough to survive on their own [1]. Such "dust traps" have been proposed, but there was no observational proof of their existence up to now.

Nienke van der Marel, a PhD student at Leiden Observatory in the Netherlands, and lead author of the article, was using ALMA along with her co-workers, to study the disc in a system called Oph-IRS 48 [2]. They found that the star was circled by a ring of gas with a central hole that was probably created by an unseen planet or companion star. Earlier observations using ESO's Very Large Telescope had already shown that the small dust particles also formed a similar ring structure. But the new ALMA view of where the larger millimetre-sized dust particles were found was very different!

"At first the shape of the dust in the image came as a complete surprise to us," says van der Marel. "Instead of the ring we had expected to see, we found a very clear cashew-nut shape! We had to convince ourselves that this feature was real, but the strong signal and sharpness of the ALMA observations left no doubt about the structure. Then we realised what we had found."

What had been discovered was a region where bigger dust grains were trapped and could grow much larger by colliding and sticking together. This was a dust trap - just what the theorists were looking for.

As van der Marel explains: "It's likely that we are looking at a kind of comet factory as the conditions are right for the particles to grow from millimetre to comet size. The dust is not likely to form full-sized planets at this distance from the star. But in the near future ALMA will be able to observe dust traps closer to their parent stars, where the same mechanisms are at work. Such dust traps really would be the cradles for new-born planets."

The dust trap forms as bigger dust particles move in the direction of regions of higher pressure. Computer modelling has shown that such a high pressure region can originate from the motions of the gas at the edge of a gas hole - just like the one found in this disc.

"The combination of modelling work and high quality observations of ALMA makes this a unique project", says Cornelis Dullemond from the Institute for Theoretical Astrophysics in Heidelberg, Germany, who is an expert on dust evolution and disc modelling, and a member of the team. "Around the time that these observations were obtained, we were working on models predicting exactly these kinds of structures: a very lucky coincidence."

The observations were made while the ALMA array was still being constructed. They made use of the ALMA Band 9 receivers [3] - European-made devices that allow ALMA to create its so far sharpest images.

"These observations show that ALMA is capable of delivering transformational science, even with less than half of the full array in use," says Ewine van Dishoeck of the Leiden Observatory, who has been a major contributor to the ALMA project for more than 20 years. "The incredible jump in both sensitivity and image sharpness in Band 9 gives us the opportunity to study basic aspects of planet formation in ways that were simply not possible before."

This research was presented in a paper "A major asymmetric dust trap in a transition disk", by van der Marel et al, to appear in the journal Science on 7 June 2013.

.


Related Links
ESO
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








IRON AND ICE
Hubble telescope spots bizarre asteroid sporting comet-like tail
Indianapolis (UPI) Jun 4, 2013
The Hubble space telescope has revealed a bizarre asteroid, U.S. astronomers say - one trailing a tail of dust more than 600,000 miles long. The object found soaring through the asteroid belt was first thought to be a comet because of its long, well-formed tail, they said, but has been confirmed as a rare phenomenon dubbed an "active" asteroid. Its odd, X-shaped trailing debris ... read more


IRON AND ICE
France's RTE to launch 'smart' power substations

Study finds disincentives to energy efficiency can be fixed

California Implementing Standardized Permanent Load Shifting Program

EU emitted 3.3% less greenhouse gas in 2011: report

IRON AND ICE
Stanford scientists create novel silicon electrodes that improve lithium-ion batteries

Father Laiu fights to save rural Romania from fracking

New all-solid sulfur-based battery outperforms lithium-ion technology

Bringing cheaper, 'greener' lighting to market with inkjet-printed hybrid quantum dot LEDs

IRON AND ICE
Uruguay deficit likely to speed windpower plans

Romania decree threatens green energy projects

Philippines ready to move forward on renewable energy?

Cold climate wind energy showing huge potential

IRON AND ICE
US DoI Approves SolarReserve's 100 MW Arizona Solar Power Project

Greenwood Biosar Commences Construction of One of Vermont's Largest Solar Arrays

Growing Demand for New Production Homes with Solar

BluEarth Renewables to Purchase Four Utility-Scale Solar Power Plants From Canadian Solar

IRON AND ICE
Japan PM to step up nuclear export drive: report

Upgrades ordered for U.S. reactors

Glitch-hit US nuclear plant shut down for good

Japan's Fukushima operator admits culpability in suicide

IRON AND ICE
Climate change raises stakes on US ethanol policy

Scotland gives green light to $710M wood biomass heat-power plant

Enzyme from wood-eating gribble could help turn waste into biofuel

Molecular switch for cheaper biofuel

IRON AND ICE
Crew Shuffles for Shenzhou 10

Shenzhou 10's Missing Parts

Shenzhou's Code of Silence

Shenzhou-10 spacecraft to be launched in mid-June

IRON AND ICE
Pollution in Northern Hemisphere helped cause 1980s African drought

Carbon rise spurs 'urgent' appeal at UN climate talks

Chatham Rise Geochemistry Survey Reveals Modern C02 Emissions

Global warming caused by CFCs, not CO2




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement