Energy News  
STELLAR CHEMISTRY
ALMA discovers cold dust around nearest star
by Staff Writers
Munich, Germany (SPX) Nov 08, 2017


This artist's impression shows how the newly discovered belts of dust around the closest star to the Solar System, Proxima Centauri, may look. ALMA observations revealed the glow coming from cold dust in a region between one to four times as far from Proxima Centauri as the Earth is from the Sun. The data also hint at the presence of an even cooler outer dust belt and indicate the presence of an elaborate planetary system. These structures are similar to the much larger belts in the Solar System and are also expected to be made from particles of rock and ice that failed to form planets. Note that this sketch is not to scale - to make Proxima b clearly visible it has been shown further from the star and larger than it is in reality.

Proxima Centauri is the closest star to the Sun. It is a faint red dwarf lying just four light-years away in the southern constellation of Centaurus (The Centaur). It is orbited by the Earth-sized temperate world Proxima b, discovered in 2016 and the closest planet to the Solar System. But there is more to this system than just a single planet. The new ALMA observations reveal emission from clouds of cold cosmic dust surrounding the star.

The lead author of the new study, Guillem Anglada, from the Instituto de Astrofisica de Andalucia (CSIC), Granada, Spain, explains the significance of this find: "The dust around Proxima is important because, following the discovery of the terrestrial planet Proxima b, it's the first indication of the presence of an elaborate planetary system, and not just a single planet, around the star closest to our Sun."

Dust belts are the remains of material that did not form into larger bodies such as planets. The particles of rock and ice in these belts vary in size from the tiniest dust grain, smaller than a millimetre across, up to asteroid-like bodies many kilometres in diameter.

Dust appears to lie in a belt that extends a few hundred million kilometres from Proxima Centauri and has a total mass of about one hundredth of the Earth's mass. This belt is estimated to have a temperature of about -230 degrees Celsius, as cold as that of the Kuiper Belt in the outer Solar System.

There are also hints in the ALMA data of another belt of even colder dust about ten times further out. If confirmed, the nature of an outer belt is intriguing, given its very cold environment far from a star that is cooler and fainter than the Sun. Both belts are much further from Proxima Centauri than the planet Proxima b, which orbits at just four million kilometres from its parent star.

Guillem Anglada explains the implications of the discovery: "This result suggests that Proxima Centauri may have a multiple planet system with a rich history of interactions that resulted in the formation of a dust belt. Further study may also provide information that might point to the locations of as yet unidentified additional planets."

Proxima Centauri's planetary system is also particularly interesting because there are plans - the Starshot project - for future direct exploration of the system with microprobes attached to laser-driven sails. A knowledge of the dust environment around the star is essential for planning such a mission.

Co-author Pedro Amado, also from the Instituto de Astrofisica de Andalucia, explains that this observation is just the start: "These first results show that ALMA can detect dust structures orbiting around Proxima. Further observations will give us a more detailed picture of Proxima's planetary system.

In combination with the study of protoplanetary discs around young stars, many of the details of the processes that led to the formation of the Earth and the Solar System about 4600 million years ago will be unveiled. What we are seeing now is just the appetiser compared to what is coming!"

STELLAR CHEMISTRY
Shedding light on the mystery of matter accretion in young stars
Quebec City, Canada (SPX) Nov 08, 2017
An international team of researchers from multiple institutions, including INRS, is shedding light on the mystery of matter accretion in young stars. Published in the November 1, 2017 Science Advances online journal, their discovery helps explain how matter accumulates on the surface of a young star and reconciles the theory behind and observations on the accretion process - a matter of debate a ... read more

Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Improving sensor accuracy to prevent electrical grid overload

Japan faces challenges in cutting CO2, Moody's finds

IEA: An electrified world would cost $31B per year to achieve

'Fuel-secure' steps in Washington counterintuitive, green group says

STELLAR CHEMISTRY
Microscopic defects make batteries better

Scientists create magnetic system that transforms heat into motion

New studies on disordered cathodes may provide much-needed jolt to lithium batteries

UNIST unveils new fast-charging, high-energy electric-car battery technology

STELLAR CHEMISTRY
New York sets high bar for wind energy

Construction to begin on $160 million Industry Leading Hybrid Renewable Energy Project

A kite that might fly

Scotland outreach to Canada yields wind energy investment

STELLAR CHEMISTRY
OMCO Solar expands to met demand for field-fast racking systems

European lender closer to green finance goals

Mechanochemistry paves the way to higher quality perovskite photovoltaics

US renewable energy booms despite Trump vow to quit Paris deal

STELLAR CHEMISTRY
Rutgers-led research could revolutionize nuclear waste reprocessing and save money

Bulgaria extends life of Soviet-era nuclear reactor

Nuclear energy programs may not increase likelihood of proliferation

South Korea to push ahead with nuclear power plants

STELLAR CHEMISTRY
Study identifies additional hurdle to widespread planting of bioenergy crops

Penn researchers mimic giant clams to enhance the production of biofuel

Research aims to help renewable jet fuel take flight

Expanding Brazilian sugarcane could dent global CO2 emissions

STELLAR CHEMISTRY
Study maps Sub-Saharan Africa's dependency on China

Tight markets, demand spike mean higher gas prices

Oil prices inch lower after Monday's massive rally

An Iranian benchmark for oil just topped $60 per barrel

STELLAR CHEMISTRY
Cities can cut greenhouse gas emissions far beyond their urban borders

2017 set to be hottest non-El Nino year: UN

Plea for 'urgent action' on climate shadowed by Trump

White House OKs report warning climate change caused by humans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.